Analysis of Physical Cutting Mechanisms and Their Effects on the Tool Wear and Chip Formation Process When Machining Aeronautical Titanium Alloys: Ti-6Al-4V and Ti-55531

  • Mohammed NouariEmail author
  • Hamid Makich
Part of the Materials Forming, Machining and Tribology book series (MFMT)


The current research deals with the analysis of physical cutting mechanisms involved during the machining process of titanium alloys: Ti-6Al-4V and Ti-55531. The objective is to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations have been focused on the mechanisms of chip formation and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact) shows that the machining Ti-55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy. Moreover, the proposed study describe the real effect on machining of the tool geometry, coating and lubrication. Finally, the investigations allow to identify some ways to improve the machinability of these alloys, particularly the Ti-55531 alloy.


Titanium Alloy Tool Wear Chip Formation Rake Angle Tool Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng 213A:103–114CrossRefGoogle Scholar
  2. 2.
    Ginting A, Nouari M (2009) Surface integrity of dry machined titanium alloys. Int J Mach Tools Manuf 49(3–4):325–332CrossRefGoogle Scholar
  3. 3.
    Clément N, Lenain A, Jacques PJ (2007) Mechanical property optimization via microstructural control of new metastable beta Titanium alloys, processing and characterizing Titanium alloys overview. JOM 59:50–53Google Scholar
  4. 4.
    Clement N et al (2005) In: JM Howe et al (ed) Proceedings of international conference solid-solid phase transformations in inorganic materials. TMS, Warrendale, PA, pp 603–608Google Scholar
  5. 5.
    Nouari M, Ginting A (2006) Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surf Coat Technol 200(18–19):5663–5676CrossRefGoogle Scholar
  6. 6.
    Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tools Manuf 46(7–8):758–768CrossRefGoogle Scholar
  7. 7.
    Nouari M, Makich H (2013) Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti-6Al-4V and Ti-555. Int J Refract Metal Hard Mater 41:259–269CrossRefGoogle Scholar
  8. 8.
    Ginting A, Nouari M (2007) Optimal cutting conditions when dry end milling the aeroengine material Ti-6242S. J Mater Process Technol 184:319–324CrossRefGoogle Scholar
  9. 9.
    Komanduri R (1981) Turkovich B.F.V., new observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188CrossRefGoogle Scholar
  10. 10.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274Google Scholar
  11. 11.
    Subramanian SV, Ingle SS, Kay DAR (1993) Design of coatings to minimize tool crater wear. Surf Coat Tech 61:293–299CrossRefGoogle Scholar
  12. 12.
    Bouchnak TB (2010) Etude du comportement en sollicitations extrêmes et de l’usinabilité d’un nouvel alliage de titane aéronautique, PhD thesis, Ref. 2010-ENAM-0051, Arts et Métiers ParisTech—Centre d’AngersGoogle Scholar
  13. 13.
    Fanning JC (2005) Properties of TIMETAL 555 (Ti-5Al-5Mo-5 V-3Cr-0.6Fe). JMEPEG 14:788–791Google Scholar
  14. 14.
    Nyakana SL, Fanning JC, Boyer RR (2005) JMEPEG 14:799–811CrossRefGoogle Scholar
  15. 15.
    Semiatin SL (1999) Seetharaman V, Ghosh AK (1999) Plastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures. Philos Trans R Soc A: Mathe Phys Eng Sci 357(1756):1487–1512CrossRefGoogle Scholar
  16. 16.
    Jackson M, Dashwood R, Christodoulou L, Flower H (2005) The microstructural evolution of near beta alloy Ti-10 V-2Fe-3Al during subtransus forging. Metall Mater Trans A 36:1317–1327CrossRefGoogle Scholar
  17. 17.
    Benedetti M, Fontanari V (2004) The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating from edge-notches. Fatigue Fract Eng Mater Struct 27:1073–1089CrossRefGoogle Scholar
  18. 18.
    Nouari M, Calamaz M, Girot F (2008) Mécanismes d’usure des outils coupants en usinage à sec de l’alliage de titane aéronautique Ti-6Al-4V, C.R. Mécanique 336:772–781Google Scholar
  19. 19.
    Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7–8):931–942CrossRefGoogle Scholar
  20. 20.
    Singh Gill S, Singh R, Singh H, Singh J (2011) Investigation onwear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning. Int J Mach Tools Manuf 51(1):25–33Google Scholar
  21. 21.
    Castanho J, Vieira M (2003) Effect of ductile layers in mechanical behaviour of TiAlN thin coatings. J Mater Process Technol 143:352–357CrossRefGoogle Scholar
  22. 22.
    Battagliaa JL, Coisb O, Puigsegura L, Oustaloupb A (2001) Solving an inverse heat conduction problem using a non-integer identified model. Int J Heat Mass Transfer 44:2671–2680Google Scholar
  23. 23.
    Puerta Velasquez JD, Bolle B, Chevrier P, Geandier G, Tidu A (2007) Metallurgical study on chips obtained by high speed machining of a Ti–6 wt%Al–4 wt%V alloy. Mater Sci Eng A 452–453, 469–474Google Scholar
  24. 24.
    He Yi (2005) Rapid thermal conductivity measurement with a hot disk sensor: part 1. Theoret Considerations Thermochim Acta 436:122–129CrossRefGoogle Scholar
  25. 25.
    Abdel-Aal HA, Nouari M, Mansori ELM (2009) Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys. Wear 266:432–443Google Scholar
  26. 26.
    Merchant E (1945) Mechanics of the metal cutting process II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324CrossRefGoogle Scholar
  27. 27.
    Merchant E (1945) Mechanics of the metal cutting process I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRefGoogle Scholar
  28. 28.
    Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34CrossRefGoogle Scholar
  29. 29.
    Powell BE, Duggan TV (1986) Predicting the onset of high cycle fatigue damage: an engineering application for long crack fatigue threshold data. Int J Fatigue 8:187–194CrossRefGoogle Scholar
  30. 30.
    Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4 V and Ti555.3). J Mater Process Technol 209:2223–2230Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire D’Énergétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563GIP-InSICSt-Dié-Des-VosgesFrance
  2. 2.University of Lorraine/Mines NancyMines NancyFrance
  3. 3.Laboratoire D’Énergétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563GIP-InSIC/Mines D’AlbiSt-Dié-Des-VosgesFrance

Personalised recommendations