Skip to main content

Human Microbiota and Its Function

  • Chapter
Infectious Microecology

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 714 Accesses

Abstract

The human body is home to complex communities of microorganisms. Their total number is estimated to be 1014; 10 times the number of human cells per individual [1]. These microbial communities are found on our skin, in the mouth, nose, ears, vagina, and in the intestinal tract. Similar to environmental sources in which microbes are found, such as seawater and soil, the human body could be considered as an ecosystem consisting of different niches, or a meta-community consisting of many local communities. Each anatomical site has its own physiochemical characteristics, and each location is occupied with a specialized set of microbes. The majority of the human-associated microbes and the largest diversity are found in the intestinal tract, where microbial abundance increases from the stomach to the colon, with the highest number of microbes found in stools (1011 per mL). This complex ecosystem consists of bacteria, archaea, yeasts and other eukaryotes [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengmark S. Ecological control of the gastroinstinal tract: the role of probiotic flora. Gut, 1998, 42: 2–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Elisabeth M B. Composition and function of the human-associated microbiota Nutr Rev, 2009, 67(suppl 2): 164–171.

    Google Scholar 

  3. Gronlund M M, Lehtonen O P, Eerola E, et al. Fecal microflora in healthy infants born by different methods of delivery:permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr, 1999, 28:19–25.

    Article  CAS  PubMed  Google Scholar 

  4. Backhed F, Ley R E, Justin L, et al. Host-bacterial mutualism in the human intestine. Science, 2005, 307: 1915–1920.

    Article  PubMed  Google Scholar 

  5. Zoetendal E G Akkermans ADL, Akkermans-van vliet WM, et al. The host genotype affects the bacterial community in the human gastro-intestinal tract. Microb. Ecol Health Dis, 2001, 13: 129–134.

    Article  Google Scholar 

  6. Simon G L, Gorbach S L. Intestinal flora in health and disease. Gastroenterology, 1984, 86: 174–193.

    CAS  PubMed  Google Scholar 

  7. Guarner F, Malagelada J R. Gut flora in health and disease, Lancet, 2003, 361: 512–519.

    Article  PubMed  Google Scholar 

  8. Palmer C, Bik E M, Digiulio D B, et al. Development of the human infant intestinal microbiota. PLoS Biol, 2007, 5: e177.

    Google Scholar 

  9. Suau A, Bonnet R, Sutren M, et al. Direct rDNA community analysis reveals a myriad of novel bacterial lineages within the human gut. Appl Environ Microbiol, 1999, 65: 4799–4807.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Tannock G W. Molecular assessment of intestinal microflora. Am J Clin Nutr, 2001, 73 (suppl): S410-S414.

    Google Scholar 

  11. Kimura K, McCartney A I, McConnell M A, et al. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol, 1997, 63: 3394–3398.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Sghir A, Gramet G, Suau A, et al. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000, 66: 2263–2266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cummings J H, Beatty E R, Kingman S M, et al. Digestion and physiological properties of resistant starch in the human large bowel. Br J Nutr, 1996, 75: 733–747.

    Article  CAS  PubMed  Google Scholar 

  14. Smith E A, Macfarlane G T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol, 1996, 81: 288–302.

    Article  CAS  PubMed  Google Scholar 

  15. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 1999, 46: 183–196.

    CAS  PubMed  Google Scholar 

  16. Hill M J. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prey 1997, 6 (suppl): S43-S45.

    Article  Google Scholar 

  17. Miyazawa E, Iwabuchi A, Yoshida T. Phytate breakdown and apparent absorption of phosphorus, calcium and magnesium in germfree and conventionalized rats. Nutr Res, 1996, 16: 603–613.

    Article  CAS  Google Scholar 

  18. Younes H, Coudray C, Bellanger J, et al. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr, 2001, 86: 479–485.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z N, Klipfell E, Brian J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease Nature, 2011, 472 (7341): 57–63.

    CAS  PubMed  Google Scholar 

  20. Hill J. Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocr Rev, 2006, 27: 750–761.

    Article  PubMed  Google Scholar 

  21. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 2004, 101: 15718–15723.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ley R E, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 2005, 102: 11070–11075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity. Nature, 2006, 444:1022–1023.

    Article  CAS  PubMed  Google Scholar 

  24. Turbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444: 1027–1031.

    Article  Google Scholar 

  25. Marko K, Collado M C, Salminen S, et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr, 2008, 87:534–538.

    Google Scholar 

  26. Bajzer M, Seeley R J. Physiology: Obesity and gut flora. Nature, 2006, 444: 1009–1010.

    Article  CAS  PubMed  Google Scholar 

  27. Cani P D, Neyrinck A M, Maton N, et al. Oligofructose promotes satiety in rats fed a high-fat diet: Involvement of glucagon-like peptide-1. Obes Res, 2005, 13: 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  28. Kolida S, Meyer D, Gibson G R. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healty humans. Eur J Clin Nutr, 2007, 61: 1189–1195.

    Article  CAS  PubMed  Google Scholar 

  29. Alam M, Midtvedt T, Uribe A. Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol, 1994, 29: 445–451.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon J I, Hooper L V, McNevin M S, et al. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: Conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol, 1997, 273: G565-G570.

    Google Scholar 

  31. Krinos C M, Coyne M J, Weinacht K G, et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature, 2001, 414: 555–558.

    Article  CAS  PubMed  Google Scholar 

  32. Kagnoff M F, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest, 1997, 100: 6–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Aderem A, Ulevitch R J. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406: 782–787.

    Article  CAS  PubMed  Google Scholar 

  34. Borruel N, Carol M, Casellas F, et al. Increased mucosal TNF_production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria. Gut, 2002, 5: 659–664.

    Article  Google Scholar 

  35. Ling Z, Liu X, Luo Y, et al. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics 2013, 14: 390.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ling Z, Liu X, Wang Y, et al. Pyrosequencing analysis of the salivary microbiota of healthy Chinese children and adults. Microb Ecol, 2013, 65: 487–495.

    Article  PubMed  Google Scholar 

  37. Taguchi H, Takahashi M, Yamaguchi H, et al. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J Med Microbiol, 2002, 51: 336–343.

    Article  CAS  PubMed  Google Scholar 

  38. Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 2000, 47: 646–652.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Y. (2014). Human Microbiota and Its Function. In: Li, L. (eds) Infectious Microecology. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43883-1_2

Download citation

Publish with us

Policies and ethics