Advertisement

Biliary Infection, Pancreatic Infection and Microecology

  • Jianwen Jiang
  • Zhigang Ren
  • Shusen Zheng
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

The biliary tract system mainly transports bile secreted by hepatocytes and bile duct epithelial cells into the gut, and includes the intra-hepatic biliary tract and extra hepatic biliary tract. It starts from intra hepatic capillary biliary tract, and ends with pancreatic duct rendezvous with the Vater ampullary, opening into the duodenum nipple. The pancreas is the body’s second largest digestive gland secondary to the liver, and has exocrine and endocrine functions. Normally, the pancreas stimulated by food, etc. secretes mounts of characteristic pancreatic juice into the gut. Thus, biliary tract and pancreas infections are closely associated with intestinal bacterial translocation and microecology imbalance.

Keywords

Bile Acid Acute Pancreatitis Common Bile Duct Biliary Tract Acute Pancreatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abdeldayem H, Ghoneim E, Refaei A A, et al. Obstructive jaundice promotes intestinal-barrier dysfunction and bacterial translocation: Experimental study. Hepatol Int, 2007, 1: 444–448.PubMedCentralPubMedCrossRefGoogle Scholar
  2. [2]
    Pinzone M R, Celesia B M, Di Rosa M, et al. Microbial translocation in chronic liver diseases. Int J Microbiol, 2012: 629–694.Google Scholar
  3. [3]
    Wang F, Jiang H, Shi K, et al. Gut Bacterial Translocation is associated with Microinflammation in End Stage Renal Disease Patients. Nephrology (Carlton), 2012, 17: 733–738.CrossRefGoogle Scholar
  4. [4]
    Ilan Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol, 2012, 18: 2609–2618.CrossRefGoogle Scholar
  5. [5]
    Quirino I E, Cardoso V N, Santos R D, et al. The Role of L-arginine and inducible nitric oxide synthase in intestinal permeability and bacterial translocation. J Parenter Enteral Nutr, 2013, 37: 392–400.CrossRefGoogle Scholar
  6. [6]
    Lundell L. Use of probiotics in abdominal surgery. Dig Dis, 2011, 29: 570–573.PubMedCrossRefGoogle Scholar
  7. [7]
    Liu Z, Ma Y, Qin H. Potential prevention and treatment of intestinal barrier dysfunction using active components of Lactobacillus. Ann Surg, 2011, 254: 832–833; author reply 3.PubMedCrossRefGoogle Scholar
  8. [8]
    Sarna S K. Cyclic motor activity; migrating motor complex. Gastroenterology, 1985, 89: 894–913.PubMedGoogle Scholar
  9. [9]
    Grivell M B, Woods C M, Grivell A R, et al. The possum sphincter of Oddi pumps or resists flow depending on common bile duct pressure: a multilumen manometry study. J Physiol, 2004, 558: 611–622.PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Zelenka J, Muchova L, Zelenkova M, et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie, 2012, 94: 1821–1827.PubMedCrossRefGoogle Scholar
  11. [11]
    Lamsa V, Levonen A L, Sormunen R, et al. Heme and heme biosynthesis intermediates induce Heme oxygenase-1 and cytochrome P450 2A5, enzymes with putative sequential roles in heme and bilirubin metabolism: Different requirement for transcription factor nuclear factor erythroid-derived 2-like 2. Toxicol Sci, 2012, 130: 132–144.PubMedCrossRefGoogle Scholar
  12. [12]
    Wi Y M, Peck K R. Biliary sepsis caused by Ochrobactrum anthropi. Jpn J Infect Dis, 2010, 63: 444–446.PubMedGoogle Scholar
  13. [13]
    Correia M I, Liboredo J C, Consoli M L. The role of probiotics in gastrointestinal surgery. Nutrition, 2012, 28: 230–234.PubMedCrossRefGoogle Scholar
  14. [14]
    Chao C M, Lai C C, Tang H J, et al. Biliary tract infections caused by Aeromonas species. Eur J Clin Microbiol Infect Dis, 2013, 32: 245–251.PubMedCrossRefGoogle Scholar
  15. [15]
    Ortega M, Marco F, Soriano A, et al. Epidemiology and prognostic determinants of bacteraemic biliary tract infection. J Antimicrob Chemother, 2012, 67: 1508–1513.PubMedCrossRefGoogle Scholar
  16. [16]
    Shanahan F. Probiotics in perspective. Gastroenterology, 2010, 139: 1808–1812.PubMedCrossRefGoogle Scholar
  17. [17]
    Kunisawa J, Kiyono H. Peaceful mutualism in the gut: Revealing key commensal bacteria for the creation and maintenance of immunological homeostasis. Cell Host Microbe, 2011, 9: 83–84.PubMedCrossRefGoogle Scholar
  18. [18]
    Greenwood-Van Meerveld B. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil, 2012, 24: 889.CrossRefGoogle Scholar
  19. [19]
    Lorenzo-Zuniga V, Bartoli R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology, 2003, 37: 551–557.PubMedCrossRefGoogle Scholar
  20. [20]
    Clements W D, Parks R, Erwin P, et al. Role of the gut in the pathophysiology of extrahepatic biliary obstruction. Gut, 1996, 39: 587–593.PubMedCentralPubMedCrossRefGoogle Scholar
  21. [21]
    Ding J W, Andersson R, Soltesz V, et al. Obstructive jaundice impairs reticuloendothelial function and promotes bacterial translocation in the rat. J Surg Res, 1994, 57: 238–245.PubMedCrossRefGoogle Scholar
  22. [22]
    Clark J F, Loftspring M, Wurster W L, et al. Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage. Acta Neurochir Suppl, 2008, 105: 7–12.PubMedCentralPubMedCrossRefGoogle Scholar
  23. [23]
    Liu Y, Li P, Lu J, et al. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J Immunol, 2008, 181:1887–1897.PubMedCrossRefGoogle Scholar
  24. [24]
    Kapan M, Tekin R, Onder A, et al. Thymoquinone ameliorates bacterial translocation and inflammatory response in rats with intestinal obstruction. Int J Surg, 2012, 10: 484–488.PubMedCrossRefGoogle Scholar
  25. [25]
    De Winter B Y, De Man J G. Interplay between inflammation, immune system and neuronal pathways: Effect on gastrointestinal motility. World J Gastroenterol, 2010, 16: 5523–5535.PubMedCentralPubMedCrossRefGoogle Scholar
  26. [26]
    von Kampen O, Buch S, Nothnagel M, et al. Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus. Hepatology, 2013, 57: 2407–2417.CrossRefGoogle Scholar
  27. [27]
    Xie M, Kotecha VR, Andrade JD, et al. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis. J Physiol, 2012, 590: 1811–1824.PubMedCentralPubMedCrossRefGoogle Scholar
  28. [28]
    Chai J, He Y, Cai S Y, et al. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. Hepatology, 2012, 55: 1485–1494.PubMedCentralPubMedCrossRefGoogle Scholar
  29. [29]
    Ahmed M H, Hamad M A, Routh C, et al. Statins as potential treatment for cholesterol gallstones: An attempt to understand the underlying mechanism of actions. Expert Opin Pharmacother, 2011, 12: 2673–2681.PubMedCrossRefGoogle Scholar
  30. [30]
    Suo T, Peng P, Feng M, et al. Fixed-point and stratified analysis of the fine structure and composition of five gallstones with Fourier transform infrared (FT-IR) specular reflection spectroscopy. Microsc Res Tech, 2012, 75: 294–299.PubMedCrossRefGoogle Scholar
  31. [31]
    Kiriyama S, Takada T, Strasberg S M, et al. New diagnostic criteria and severity assessment of acute cholangitis in revised Tokyo guidelines. J Hepatobiliary Pancreat Sci, 2012, 19:548–556.PubMedCentralPubMedCrossRefGoogle Scholar
  32. [32]
    Schmidt M, Dumot J A, Soreide O, et al. Diagnosis and management of calculous gallbladder disease. Scand J Gastroenterol, 2012, 47: 1257–1265.PubMedCrossRefGoogle Scholar
  33. [33]
    Lee S J, Cho Y H, Lee S Y, et al. A case of scrub typhus complicated by acute calculous cholecystitis. Korean J Fam Med, 2012, 33: 243–246.PubMedCentralPubMedCrossRefGoogle Scholar
  34. [34]
    Cai D, Sorokin V, Lutwick L, et al. C. glycolicum as the sole cause of bacteremia in a patient with acute cholecystitis. Ann Clin Lab Sci, 2012, 42: 162–164.PubMedGoogle Scholar
  35. [35]
    Lata J, Jurankova J, Kopacova M, et al. Probiotics in hepatology. World J Gastroenterol, 2011, 17: 2890–2896.PubMedCentralPubMedCrossRefGoogle Scholar
  36. [36]
    Lee Y K, Mazmanian S K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 2010, 330: 1768–1773.PubMedCentralPubMedCrossRefGoogle Scholar
  37. [37]
    Khanal T, Kim H G, Jin S W, et al. Protective role of metabolism by intestinal microflora in butyl paraben-induced toxicity in HepG2 cell cultures. Toxicol Left, 2012, 213:174–183.CrossRefGoogle Scholar
  38. [38]
    Frick J S, Autenrieth I B. The gut microflora and its variety of roles in health and disease. Curr Top Microbiol Immunol, 2013, 358: 273–289.PubMedGoogle Scholar
  39. [39]
    Guarino A, Wudy A, Basile F, et al. Composition and roles of intestinal microbiota in children. J Matern Fetal Neonatal Med, 2012, 1:63–66.CrossRefGoogle Scholar
  40. [40]
    Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science, 2012, 337:1115–1119.PubMedCentralPubMedCrossRefGoogle Scholar
  41. [41]
    Macdonald T T, Monteleone G, Immunity, inflammation, and allergy in the gut. Science, 2005, 307:1920–1925.PubMedCrossRefGoogle Scholar
  42. [42]
    The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486: 207–214.PubMedCentralCrossRefGoogle Scholar
  43. [43]
    Kaya M, Bestas R, Bacalan F, et al. Microbial profile and antibiotic sensitivity pattern in bile cultures from endoscopic retrograde cholangiography patients. World J Gastroenterol, 2012, 18: 3585–3589.PubMedCentralPubMedCrossRefGoogle Scholar
  44. [44]
    Sung Y K, Lee J K, Lee K H, et al. The clinical epidemiology and outcomes of bacteremic biliary tract infections caused by antimicrobial-resistant pathogens. Am J Gastroenterol, 2012, 107: 473–483.PubMedCrossRefGoogle Scholar
  45. [45]
    Kager L M, Sjouke B, van den Brand M, et al. The role of antibiotic prophylaxis in endoscopic retrograde cholangiopancreatography; a retrospective single-center evaluation. Scand J Gastroenterol, 2012, 47: 245–250.PubMedCrossRefGoogle Scholar
  46. [46]
    Chow J, Lee S M, Shen Y, et al. Host-bacterial symbiosis in health and disease. Adv Immunol, 2010, 107: 243–274.PubMedCentralPubMedCrossRefGoogle Scholar
  47. [47]
    Backhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine. Science, 2005, 307:1915–1920.PubMedCrossRefGoogle Scholar
  48. [48]
    Methé B A, Nelson K E, Pop M. A framework for human microbiome research. Nature, 2012, 486:215–221.PubMedCentralCrossRefGoogle Scholar
  49. [49]
    Bengmark S. Pro- and synbiotics to prevent sepsis in major surgery and severe emergencies. Nutrients, 2012, 4: 91–111.PubMedCentralPubMedCrossRefGoogle Scholar
  50. [50]
    Resta-Lenert S, Barrett K E. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut, 2003, 52: 988–997.PubMedCentralPubMedCrossRefGoogle Scholar
  51. [51]
    Kinross J M, Markar S, Karthikesalingam A, et al. A meta-analysis of probiotic and synbiotic use in elective surgery: Does nutrition modulation of the gut microbiome improve clinical outcome? JPEN J Parenter Enteral Nutr, 2013, 37: 243–253.PubMedCrossRefGoogle Scholar
  52. [52]
    Holte K, Krag A, Gluud L L. Systematic review and meta-analysis of randomized trials on probiotics for hepatic encephalopathy. Hepatol Res, 2012, 42: 1008–1015.PubMedCrossRefGoogle Scholar
  53. [53]
    Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut, 2005, 54: 242–249.PubMedCentralPubMedCrossRefGoogle Scholar
  54. [54]
    Ichinohe T, Pang I K, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA, 2011, 108: 5354–5359.PubMedCentralPubMedCrossRefGoogle Scholar
  55. [55]
    Lilly D M, Stillwell R H. Probiotics: Growth-promoting factors produced by microorganisms. Science, 1965, 147: 747–748.PubMedCrossRefGoogle Scholar
  56. [56]
    Kolida S, Gibson G R. Synbiotics in health and disease. Annu Rev Food Sci Technol, 2011, 2: 373–393.PubMedCrossRefGoogle Scholar
  57. [57]
    Fuller R. Probiotics in human medicine. Gut, 1991, 32:439–442.PubMedCentralPubMedCrossRefGoogle Scholar
  58. [58]
    Dunne C, O’Mahony L, Murphy L, et al. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am J Clin Nutr, 2001, 73: S386–S392.Google Scholar
  59. [59]
    Gibson G R, Roberfroid M B Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr, 1995, 125: 1401–1412.PubMedGoogle Scholar
  60. [60]
    Eguchi S, Takatsuki M, Hidaka M, et al. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: A prospective randomized study. Am J Surg, 2011, 201: 498–502.PubMedCrossRefGoogle Scholar
  61. [61]
    Sugawara G, Nagino M, Nishio H, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: A randomized controlled trial. Ann Surg, 2006, 244: 706–714.PubMedCentralPubMedCrossRefGoogle Scholar
  62. [62]
    Kinross J, Warren O, Silk D, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: A randomized control trial. Ann Surg, 2007, 245: 1000.PubMedCentralPubMedCrossRefGoogle Scholar
  63. [63]
    Wang S Q, Feng Q X, Li S J, et al. The day when infection is confirmed is a better time point for mortality prediction in patients with severe acute pancreatitis. Pancreas, 2012, 41: 605–610.PubMedCrossRefGoogle Scholar
  64. [64]
    Besselink M G, van Santvoort H C, Buskens E, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: A randomised, double-blind, placebo-controlled trial. Lancet, 2008, 371: 651–659.PubMedCrossRefGoogle Scholar
  65. [65]
    Olivieri C, Nanni L, Taddei A, et al. Acute pancreatitis associated with herpes simplex virus infection in a child. Pancreas, 2012, 41: 330–331.PubMedCrossRefGoogle Scholar
  66. [66]
    Jeppsson B, Mangell P, Thorlacius H. Use of probiotics as prophylaxis for postoperative infections. Nutrients, 2011, 3: 604–612.PubMedCentralPubMedCrossRefGoogle Scholar
  67. [67]
    Yadav D, Lowenfels A B. Trends in the epidemiology of the first attack of acute pancreatitis: a systematic review. Pancreas, 2006, 33: 323–330.PubMedCrossRefGoogle Scholar
  68. [68]
    Gurusamy K S, Farouk M, Tweedie J H. UK guidelines for management of acute pancreatitis: Is it time to change? Gut, 2005, 54: 1344–1345.PubMedCentralPubMedCrossRefGoogle Scholar
  69. [69]
    Sah R P, Garg P, Saluja A K. Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol, 2012, 28: 507–515.PubMedCentralPubMedCrossRefGoogle Scholar
  70. [70]
    Saluja A, Hashimoto S, Saluja M, et al. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol, 1987, 253: G508-G516.Google Scholar
  71. [71]
    Saluja A K, Bhagat L, Lee H S, et al. Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol, 1999, 276: G835-G842.Google Scholar
  72. [72]
    Kolodecik T R, Shugrue C A, Thrower E C, et al. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acin ar cells. PLoS One, 2012, 7: e41320.Google Scholar
  73. [73]
    Dawra R, Sah R P, Dudeja V, et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology, 2011, 141: 2210–2217 e2.PubMedCentralPubMedCrossRefGoogle Scholar
  74. [74]
    Sah R P, Saluja A. Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol, 2011, 27: 444–451.PubMedCentralPubMedCrossRefGoogle Scholar
  75. [75]
    Park C Y, Hoover P J, Mullins F M, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orail. Cell, 2009, 136: 876–890.PubMedCentralPubMedCrossRefGoogle Scholar
  76. [76]
    Mukherjee R, Criddle D N, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium, 2008, 44: 14–23.PubMedCrossRefGoogle Scholar
  77. [77]
    Cardenas C, Miller RA, Smith I, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 2010, 142: 270–283.PubMedCentralPubMedCrossRefGoogle Scholar
  78. [78]
    Lugea A, Waldron R T, French SW, et al. Drinking and driving pancreatitis: Links between endoplasmic reticulum stress and autophagy. Autophagy, 2011, 7: 783–785.PubMedCentralPubMedCrossRefGoogle Scholar
  79. [79]
    Grasso D, Ropolo A, Lo Re A, et al. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem, 2011, 286: 8308–8324.PubMedCentralPubMedCrossRefGoogle Scholar
  80. [80]
    Ahmed F, Fogel E. Reply to Reiss G, Ramrakhiani S. Right upper-quadrant pain and a normal abdominal ultrasound. Clin Gastroenterol Hepatol, 2009, 7: 603. Clin Gastroenterol Hepatol, 2009, 7: 1256.CrossRefGoogle Scholar
  81. [81] Mashima H, Sato T, Horie Y, et al. Interferon regulatory factor-2 regulates exocytosis mechanisms mediated by SNAREs in pancreatic acinar cells. Gastroenterology, 2011, 141: 1102–1113, el-8.Google Scholar
  82. [82]
    Chen Y, Zak Y, Hernandez-Boussard T, et al. The epidemiology of idiopathic acute pancreatitis, analysis of the nationwide inpatient sample from 1998 to 2007. Pancreas, 2013, 42: 1–5.PubMedCrossRefGoogle Scholar
  83. [83]
    Dufour M C, Adamson M D. The epidemiology of alcohol-induced pancreatitis. Pancreas, 2003, 27: 286–290.PubMedCrossRefGoogle Scholar
  84. [84]
    Algul H, Tando Y, Schneider G, et al. Acute experimental pancreatitis and NF-κB/Rel activation. Pancreatology, 2002, 2: 503–509.PubMedCrossRefGoogle Scholar
  85. [85]
    Garcia M, Calvo J J. Cardiocirculatory pathophysiological mechanisms in severe acute pancreatitis. World J Gastrointest Pharmacol Ther, 2010, 1: 9–14.PubMedCentralPubMedCrossRefGoogle Scholar
  86. [86]
    Andersen A M, Novovic S, Ersboll A K, et al. Mortality in alcohol and biliary acute pancreatitis. Pancreas, 2008, 36: 432–434.PubMedCrossRefGoogle Scholar
  87. [87]
    Hirota M, Satoh K, Kikuta K, et al. Early detection of low enhanced pancreatic parenchyma by contrast-enhanced computed tomography predicts poor prognosis of patients with acute pancreatitis. Pancreas, 2012, 41: 1099–1104.PubMedCrossRefGoogle Scholar
  88. [88]
    Bryner B S, Smith C, Cooley E, et al. Extracorporeal life support for pancreatitis-induced acute respiratory distress syndrome. Ann Surg, 2012, 256: 1073–1077.PubMedCrossRefGoogle Scholar
  89. [89]
    Besselink M G, van Santvoort H C, Renooij W, et al. Intestinal barrier dysfunction in a randomized trial of a specific probiotic composition in acute pancreatitis. Ann Surg, 2009, 250: 712–719.PubMedCrossRefGoogle Scholar
  90. [90]
    Runkel N S, Rodriguez L F, Moody F G Mechanisms of sepsis in acute pancreatitis in opossums. Am J Surg, 1995, 169: 227–232.PubMedCrossRefGoogle Scholar
  91. [91]
    Penny S M. Clinical signs of pancreatitis. Radiol Technol, 2012, 83: 561–577.PubMedGoogle Scholar
  92. [92]
    Ono S, Tsujimoto H, Yamauchi A, et al. Detection of microbial DNA in the blood of surgical patients for diagnosing bacterial translocation. World J Surg, 2005, 29: 535–539.PubMedCrossRefGoogle Scholar
  93. [93]
    Kane T D, Alexander J W, Johannigman J A. The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg, 1998, 227: 1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  94. [94]
    Carnovale A, Rabitti P G, Manes G, et al. Mortality in acute pancreatitis: Is it an early or a late event? JOP, 2005, 6: 438–444.PubMedGoogle Scholar
  95. [95]
    Heimesaat M M, Boelke S, Fischer A, et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One, 2012, 7: e40758.Google Scholar
  96. [96]
    Corradi F, Brusasco C, Fernandez J, et al. Effects of pentoxifylline on intestinal bacterial overgrowth, bacterial translocation and spontaneous bacterial peritonitis in cirrhotic rats with ascites. Dig Liver Dis, 2012, 44: 239–244.PubMedCrossRefGoogle Scholar
  97. [97]
    Deitch E A. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg, 1990, 125: 403–404.PubMedCrossRefGoogle Scholar
  98. [98]
    Luiten E J, Hop W C, Lange J F, et al. Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg, 1995, 222: 57–65.PubMedCentralPubMedCrossRefGoogle Scholar
  99. [99]
    Maung A A, Davis K A. Perioperative nutritional support: immunonutrition, probiotics, and anabolic steroids. Surg Clin North Am, 2012, 92: 273–283.PubMedCrossRefGoogle Scholar
  100. [100]
    Anand N, Park J H, Wu B U. Modern management of acute pancreatitis. Gastroenterol Clin North Am, 2012, 41: 1–8.PubMedCrossRefGoogle Scholar
  101. [101]
    Su M S, Lin M H, Zhao Q H, et al. Clinical study of distribution and drug resistance of pathogens in patients with severe acute pancreatitis. Chin Med J (Engl), 2012, 125: 1772–1776.Google Scholar
  102. [102]
    Qu R, Ji Y, Ling Y, et al. Procalcitonin is a good tool to guide duration of antibiotic therapy in patients with severe acute pancreatitis. A randomized prospective single-center controlled trial. Saudi Med J, 2012, 33: 382–387.PubMedGoogle Scholar
  103. [103]
    Jiang K, Huang W, Yang X N, et al. Present and future of prophylactic antibiotics for severe acute pancreatitis. World J Gastroenterol, 2012, 18: 279–284.PubMedCentralPubMedCrossRefGoogle Scholar
  104. [104]
    Whitcomb D C. Clinical practice: Acute pancreatitis. N Engl J Med, 2006, 354: 2142–2150.PubMedCrossRefGoogle Scholar
  105. [105]
    Burns G P, Stein T A, Kabnick L S. Blood-pancreatic juice barrier to antibiotic excretion. Am J Surg, 1986, 151: 205–208.PubMedCrossRefGoogle Scholar
  106. [106]
    Kang W, Zhao Y, Tao W, et al. Change of 5-fluorouracil penetration in blood-pancreatic barrier of rats after high-dose radiotherapy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000. 22: 457–459.PubMedGoogle Scholar
  107. [107]
    Ong J P, Fock K M. Nutritional support in acute pancreatitis. J Dig Dis, 2012, 13: 445–452.PubMedCrossRefGoogle Scholar
  108. [108]
    Mirtallo J M, Forbes A, McClave S A, et al. International consensus guidelines for nutrition therapy in pancreatitis. JPEN J Parenter Enteral Nutr, 2012, 36: 284–291.PubMedCrossRefGoogle Scholar
  109. [109]
    Yi F, Ge L, Zhao J, et al. Meta-analysis: Total parenteral nutrition versus total enteral nutrition in predicted severe acute pancreatitis. Intern Med, 2012, 51: 523–530.PubMedCrossRefGoogle Scholar
  110. [110]
    Bordeje L L, Lorencio C C, Acosta E J. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: Update. Consensus SEMICYUC-SENPE: Severe acute pancreatitis. Nutr Hosp, 2011, 26: S32-S36.Google Scholar
  111. [111]
    Rangel-Huerta O D, Aguilera C M, Mesa M D, et al. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: A systematic review of randomised clinical trials. Br J Nutr, 2012, 107: S159–S170.CrossRefGoogle Scholar
  112. [112]
    Liu D, Chen Z. The regulatory effects of glutamine on illness and health. Protein Pept Lett, 2011, 18: 658–662.PubMedCrossRefGoogle Scholar
  113. [113]
    Curi R, Newsholme P, Procopio J, et al. Glutamine, gene expression, and cell function. Front Biosci, 2007, 12: 344–357.PubMedCrossRefGoogle Scholar
  114. [114]
    Rossoni Junior J V, Araujo G R, Padua B C, et al. Annatto extract and beta-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats. Free Radic Res, 2012, 46: 329–338.PubMedCrossRefGoogle Scholar
  115. [115]
    Katsuura S, Imamura T, Bando N, et al., β-Carotene and β-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol Nutr Food Res, 2009, 53: 1396–1405.PubMedCrossRefGoogle Scholar
  116. [116]
    Bertrand J, Goichon A, Dechelotte P, et al. Regulation of intestinal protein metabolism by amino acids. Amino Acids, 2012, DOI 10. 1007/s00726–012-1325–8.Google Scholar
  117. [117]
    Dai Z L, Li X L, Xi P B, et al. L-glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids, 2012, DOI 10. 1007/s00726–012-1264–4.Google Scholar
  118. [118]
    Lehmann C, Pavlovic D, Zhou J, et al. Intravenous free and dipeptide-bound glutamine maintains intestinal microcirculation in experimental endotoxemia. Nutrition, 2012, 28: 588–593.PubMedCrossRefGoogle Scholar
  119. [119]
    Feng Y, Ralls M W, Xiao W, et al. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann NY Acad Sci, 2012, 1258: 71–77.PubMedCentralPubMedCrossRefGoogle Scholar
  120. [120]
    Manzanares W, Heyland D K. Pharmaconutrition with arginine decreases bacterial translocation in an animal model of severe trauma. Crit Care Med, 2012, 40: 350–352.PubMedCrossRefGoogle Scholar
  121. [121]
    Braga M. Perioperative immunonutrition and gut function. Curr Opin Clin Nutr Metab Care, 2012, 15: 485–488.PubMedCrossRefGoogle Scholar
  122. [122]
    Han S C, Kang G J, Ko Y J, et al. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol, 2012, 13: 44.PubMedCentralPubMedCrossRefGoogle Scholar
  123. [123]
    Miles E A, Calder P C. Influence of marine N-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr, 2012, 107: S171–S184.CrossRefGoogle Scholar
  124. [124]
    Bilku D K, Hall T C, Al-Leswas D, et al. Can enhanced recovery programmes be further improved by the addition of omega three fatty acids? Ir J Med Sci, 2012, 181: 453–457.PubMedCrossRefGoogle Scholar
  125. [125]
    Swanson D, Block R, Mousa S A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv Nutr, 2012, 3: 1–7.PubMedCentralPubMedCrossRefGoogle Scholar
  126. [126]
    Weichert S, Schroten H, Adam R. The role of prebiotics and probiotics in prevention and treatment of childhood infectious diseases. Pediatr Infect Dis J, 2012, 31: 856–862.CrossRefGoogle Scholar
  127. [127]
    Simren M, Barbara G, Flint H J, et al. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 2012, 62: 159–176.PubMedCentralPubMedCrossRefGoogle Scholar
  128. [128]
    D’Souza A, Cai C L, Kumar D, et al. Cytokines and toll-like receptor signaling pathways in the terminal ileum of hypoxic/hyperoxic neonatal rats: Benefits of probiotics supplementation. Am J Transl Res, 2012, 4: 187–197.PubMedCentralPubMedGoogle Scholar
  129. [129]
    Morrow L E, Gogineni V, Malesker M A. Probiotic, prebiotic, and synbiotic use in critically ill patients. Curr Opin Crit Care, 2012, 18: 186–191.PubMedCrossRefGoogle Scholar
  130. [130]
    Quigley E M. Therapies aimed at the gut microbiota and inflammation: Antibiotics, prebiotics, probiotics, synbiotics, anti-inflammatory therapies. Gastroenterol Clin North Am, 2011, 40: 207–222.PubMedCrossRefGoogle Scholar
  131. [131]
    Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol, 2011, 89: 685–695.PubMedCrossRefGoogle Scholar
  132. [132]
    Zhang M M, Cheng J Q, Lu Y R, et al. Use of pre-, pro- and synbiotics in patients with acute pancreatitis: A meta-analysis. World J Gastroenterol, 2010, 16: 3970–3978.PubMedCentralPubMedCrossRefGoogle Scholar
  133. [133]
    Ishikawa H, Matsumoto S, Ohashi Y, et al. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: A randomized controlled study. Digestion, 2011, 84: 128–133.PubMedCrossRefGoogle Scholar
  134. [134]
    Shimizu K, Ogura H, Asahara T, et al. Probiotic/synbiotic therapy for treating critically ill patients from a gut microbiota perspective. Dig Dis Sci, 2013, 58: 23–32.PubMedCentralPubMedCrossRefGoogle Scholar
  135. [135]
    Tappenden K A. Probiotics are not a one-species-fits-all proposition. JPEN J Parenter Enteral Nutr, 2012, 36: 496.PubMedCrossRefGoogle Scholar
  136. [136]
    Kelly D, Mulder I E. Microbiome and immunological interactions. Nutr Rev, 2012, 70: S18-S30.CrossRefGoogle Scholar
  137. [137]
    Nagpal R, Kaur A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr, 2011, 50: 63–68.PubMedCrossRefGoogle Scholar
  138. [138]
    van de Pol M A, Lutter R, Smids B S, et al. Synbiotics reduce allergen-induced T-helper 2 response and improve peak expiratory flow in allergic asthmatics. Allergy, 2011, 66: 39–47.CrossRefGoogle Scholar
  139. [139]
    Expression of concern — Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 375: 875–876.Google Scholar
  140. [140]
    Qin H L, Zheng J J, Tong D N, et al. Effect of Lactobacillus plantarum enteral feeding on the gut permeability and septic complications in the patients with acute pancreatitis. Eur J Clin Nutr, 2008, 62: 923–930.PubMedCrossRefGoogle Scholar
  141. [141]
    Wang L, Li Y, Ma Q, et al. Chaiqin Chengqi Decoction decreases IL-6 levels in patients with acute pancreatitis. J Zhejiang Univ Sci B, 2011, 12: 1034–1340.PubMedCentralPubMedCrossRefGoogle Scholar
  142. [142]
    Wan M H, Li J, Tang W F, et al. The influnence of dachengqi tang on acute lung injury and intra abdominal hypertension in rats with acute pancreatitis. Sichuan Da Xue Xue Bao Yi Xue Ban, 2011, 42: 707–711.PubMedGoogle Scholar
  143. [143]
    Chen Y F, Sha J P, Wu Z M. Synergetic effect of yihuo qingyi decoction (see text) and recombinant staphylokinase in treatment of severe acute pancreatitis of rats. J Tradit Chin Med, 2011, 31: 103–106.PubMedCrossRefGoogle Scholar
  144. [144]
    Xue Q M, Ning L, Xue P, et al. Effect of electroacupuncture on serum proinflammatory cytokine levels and pancreatic nuclear factor κB expression in acute pancreatitis rats. Zhen Ci Yan Jiu, 2011, 36: 272–277.PubMedGoogle Scholar
  145. [145]
    Xue Q M, Huang L, Li N. Effects of electroacupuncture at Tianshu (ST25) on pro- and anti-inflammatory cytokines in rats with severe acute pancreatitis. Zhong Xi Yi Jie He Xue Bao, 2011, 9: 658–664.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jianwen Jiang
    • 1
    • 2
  • Zhigang Ren
    • 1
    • 2
  • Shusen Zheng
    • 1
    • 2
  1. 1.Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina

Personalised recommendations