Skip to main content

Peta-Scale Hierarchical Hybrid Multigrid Using Hybrid Parallelization

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8353)


In this article we present a performance study of our finite element package Hierarchical Hybrid Grids (HHG) on current European supercomputers. HHG is designed to close the gap between the flexibility of finite elements and the efficiency of geometric multigrid by using a compromise between structured and unstructured grids. A coarse input finite element mesh is refined in a structured way, resulting in semi-structured meshes. Within this article we compare and analyze the efficiencies of the stencil-based code on those clusters.


  • Parallel multigrid
  • Performance analysis
  • HHG

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-43880-0_50
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-43880-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

  2. 2.


  1. Baumgardner, J.R.: Three-dimensional treatment of convective flow in the earth’s mantle. J. Stat. Phys. 39(5/6), 501–511 (1985)

    CrossRef  Google Scholar 

  2. Bergen, B., Gradl, T., Hülsemann, F., Rüde, U.: A massively parallel multigrid method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

    CrossRef  Google Scholar 

  3. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    CrossRef  MATH  Google Scholar 

  4. Burstedde, C., Ghattas, O., Gurnis, M., Stadler, G., Tan, E., Tu, T., Wilcox, L.C., Zhong, S.: Scalable adaptive mantle convection simulation on petascale supercomputers. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, p. 62. IEEE Press (2008)

    Google Scholar 

  5. Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Auto-tuning the 27-point stencil for multicore. In: Proceedings of the Fourth International Workshop on Automatic Performance Tuning (iWAPT2009) (2009)

    Google Scholar 

  6. Datta, K., Yelick, K.: Auto-tuning stencil codes for cache-based multicore platforms. Ph.D. thesis, University of California, Berkeley (2009)

    Google Scholar 

  7. Fattebert, J.L., Gygi, F.: Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem. 223, 662–666 (2002)

    CrossRef  Google Scholar 

  8. Gmeiner, B., Gradl, T., Köstler, H., Rüde, U.: Highly parallel geometric multigrid algorithm for hierarchical hybrid grids. In: Binder, K., Münster, G., Kremer, M. (eds.) NIC Symposium 2012. Publication series of the John von Neumann Institute for Computing, vol. 45, pp. 323–330. Jülich (2012)

    Google Scholar 

  9. Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance computing clusters. Concurr. Comput. Pract. Exp. (2012).

  10. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1985)

    CrossRef  MATH  Google Scholar 

  11. Sanchez, V., Sued, M., Scherlis, D.: First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J. Chem. Phys. 131(17), 174108 (2009)

    CrossRef  Google Scholar 

  12. Schmid, R., Tafipolsky, M., König, P.H., Köstler, H.: Car-Parrinello molecular dynamics using real space wavefunctions. Phys. Status Solidi B 243(5), 1001–1015 (2006)

    CrossRef  Google Scholar 

Download references


The work was supported by the International Doctorate Program (IDK) within the Elite Network of Bavaria. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Björn Gmeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gmeiner, B., Rüde, U. (2014). Peta-Scale Hierarchical Hybrid Multigrid Using Hybrid Parallelization. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2013. Lecture Notes in Computer Science(), vol 8353. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43879-4

  • Online ISBN: 978-3-662-43880-0

  • eBook Packages: Computer ScienceComputer Science (R0)