Peta-Scale Hierarchical Hybrid Multigrid Using Hybrid Parallelization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8353)

Abstract

In this article we present a performance study of our finite element package Hierarchical Hybrid Grids (HHG) on current European supercomputers. HHG is designed to close the gap between the flexibility of finite elements and the efficiency of geometric multigrid by using a compromise between structured and unstructured grids. A coarse input finite element mesh is refined in a structured way, resulting in semi-structured meshes. Within this article we compare and analyze the efficiencies of the stencil-based code on those clusters.

Keywords

Parallel multigrid Performance analysis HHG 

References

  1. 1.
    Baumgardner, J.R.: Three-dimensional treatment of convective flow in the earth’s mantle. J. Stat. Phys. 39(5/6), 501–511 (1985)CrossRefGoogle Scholar
  2. 2.
    Bergen, B., Gradl, T., Hülsemann, F., Rüde, U.: A massively parallel multigrid method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)CrossRefGoogle Scholar
  3. 3.
    Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)CrossRefMATHGoogle Scholar
  4. 4.
    Burstedde, C., Ghattas, O., Gurnis, M., Stadler, G., Tan, E., Tu, T., Wilcox, L.C., Zhong, S.: Scalable adaptive mantle convection simulation on petascale supercomputers. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, p. 62. IEEE Press (2008)Google Scholar
  5. 5.
    Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Auto-tuning the 27-point stencil for multicore. In: Proceedings of the Fourth International Workshop on Automatic Performance Tuning (iWAPT2009) (2009)Google Scholar
  6. 6.
    Datta, K., Yelick, K.: Auto-tuning stencil codes for cache-based multicore platforms. Ph.D. thesis, University of California, Berkeley (2009)Google Scholar
  7. 7.
    Fattebert, J.L., Gygi, F.: Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem. 223, 662–666 (2002)CrossRefGoogle Scholar
  8. 8.
    Gmeiner, B., Gradl, T., Köstler, H., Rüde, U.: Highly parallel geometric multigrid algorithm for hierarchical hybrid grids. In: Binder, K., Münster, G., Kremer, M. (eds.) NIC Symposium 2012. Publication series of the John von Neumann Institute for Computing, vol. 45, pp. 323–330. Jülich (2012)Google Scholar
  9. 9.
    Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance computing clusters. Concurr. Comput. Pract. Exp. (2012). http://dx.doi.org/10.1002/cpe.2968
  10. 10.
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1985)CrossRefMATHGoogle Scholar
  11. 11.
    Sanchez, V., Sued, M., Scherlis, D.: First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J. Chem. Phys. 131(17), 174108 (2009)CrossRefGoogle Scholar
  12. 12.
    Schmid, R., Tafipolsky, M., König, P.H., Köstler, H.: Car-Parrinello molecular dynamics using real space wavefunctions. Phys. Status Solidi B 243(5), 1001–1015 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer Science 10University of Erlangen-NürnbergErlangenGermany

Personalised recommendations