Skip to main content

Time–Frequency Analysis of EEG: From Theory to Practice

  • Chapter
  • First Online:
  • 2346 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

This chapter describes some specific results of time–frequency analysis of EEG using the continuous wavelet transform. In this chapter we pay special attention to technical and computational details of time–frequency analysis of neurophysiological signals, i.e., produced by electrical brain activity in animals and humans. This chapter also presents continuous wavelet analysis of hypersynchronous rhythmic activity in multichannel EEG, characterizing the onset of absence epilepsy in patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To estimate the relation between the characteristics of SWD and precursor activity, we used the following statistics. First, Pearson’s correlation coefficients were used to analyze the relation between the characteristics (f δ , f θ and corresponding MD) of SWD precursor activity and the frequency f b. The means per subject were used. Second, Student’s paired t-tests were used to test differences between the characteristics of SWD and precursor activity in the cortex and thalamus. Third, differences between states were analyzed with an ANOVA followed by post-hoc tests, according to Duncan [8].

  2. 2.

    This can happen when the level of neuronal network synchronization becomes too high (hyper-synchronization), or when cortical neurons express too strong an excitation (hyper-excitation) in response to the thalamic input.

  3. 3.

    Wistar rats are an outbred strain of albino rats belonging to the species Rattus norvegicus. This strain was developed at the Wistar Institute in 1906 for use in biological and medical research.

  4. 4.

    www.medicom-mtd.com/eng/index.htm

  5. 5.

    Note that intermittency of spontaneously occurring synchronized EEG oscillation epochs has already been described in humans [77].

References

  1. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, E. Sitnikova, V.A. Makarov, A.A. Ovchinnikov, Wavelet analysis in neurodynamics. Phys.-Usp. 55(9), 845 (2012)

    Google Scholar 

  2. M. Jobert, C. Tismer, E. Poiseau, H. Schulz, Wavelets: a new tool in sleep biosignal analysis. J. Sleep Res. 3, 223–232 (1994)

    Article  Google Scholar 

  3. M.K. van Vugt, P.B. Sederberg, M.J. Kahana, Comparison of spectral analysis methods for characterizing brain oscillations. J. Neurosci. Methods 162, 49–63 (2007)

    Article  Google Scholar 

  4. C.P. Panayiotopoulos, Absence epilepsies, in Epilepsy: A Comprehensive Textbook, ed. by J.J. Engel, T.A. Pedley (Lippincott-Raven, Philadelphia, 1997), pp. 2327–2346

    Google Scholar 

  5. T. Inouye, Y. Matsumoto, K. Shinosaki, A. Iyama, S. Toi, Increases in the power spectral slope of background electroencephalogram just prior to asymmetric spike and wave complexes in epileptic patients. Neurosci. Lett. 173, 197–200 (1994)

    Article  Google Scholar 

  6. E.L.M. van Luijtelaar, A.E. Hramov, E. Sitnikova, A.A. Koronovskii, Spike–wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus. Clin. Neurophysiol. 122, 687 (2011)

    Article  Google Scholar 

  7. G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates, 4th edn. (Academic, San Diego, 1998)

    Google Scholar 

  8. D.S. Moore, G.P. McCabe, Introduction to the Practice of Statistics, 6th edn. (W.H. Freeman, New York, 2009)

    Google Scholar 

  9. A. Lüttjohann, J.M. Schoffelen, E.L.M. van Luijtelaar, Peri-ictal network dynamics of spike–wave discharges: phase and spectral characteristics. Exp. Neurol. 239, 235 (2013)

    Article  Google Scholar 

  10. A. Lüttjohann, E.L.M. van Luijtelaar, The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiol. Dis. 47, 49 (2012)

    Article  Google Scholar 

  11. L. De Gennaro, M. Ferrara, Sleep spindles: an overview. Sleep Med. Rev. 7, 423 (2003)

    Article  Google Scholar 

  12. A. Destexhe, T.J. Sejnowski, Thalamocortical Assemblies (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  13. A. Destexhe, T.J. Sejnowski, Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations (Oxford University Press, Oxford, 2001)

    Google Scholar 

  14. E.L.M. van Luijtelaar, Spike–wave discharges and sleep spindles in rats. Acta Neurobiol. Exp. 57(2), 113 (1997)

    Google Scholar 

  15. E. Sitnikova, Thalamo-cortical mechanisms of sleep spindles and spike–wave discharges in rat model of absence epilepsy (a review). Epilepsy Res. 89(1), 17 (2010)

    Google Scholar 

  16. P. Gloor, Generalized cortico-reticular epilepsies: some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9, 249 (1968)

    Article  Google Scholar 

  17. S. Sato, F.E. Dreifuss, J.K. Penry, The effect of sleep on spike–wave discharges in absence seizures. Neurology 23(12), 1335 (1973)

    Google Scholar 

  18. M. Steriade, D.A. McCormick, T.J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679 (1993)

    Article  ADS  Google Scholar 

  19. G.K. Kostopoulos, Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin. Neurophysiol. 111(suppl. 2), S27 (2000)

    Google Scholar 

  20. H.K.M. Meeren, J.G. Veening, T.A.E. Moderscheim, A.M.L. Coenen, E.L.M. van Luijtelaar, Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike–wave discharges and sleep spindles. Exp. Neurol. 217(1), 25 (2009)

    Google Scholar 

  21. N. Leresche, R.C. Lambert, A.C. Errington, V. Crunelli, From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid? Pflügers Arch. Eur. J. Physiol. 463(1), 201 (2012)

    Google Scholar 

  22. W.H. Drinkenburg, A.M. Coenen, J.M. Vossen, E.L.M. van Luijtelaar, Spike–wave discharges and sleep–wake states in rats with absence epilepsy. Epilepsy Res. 9(3), 218 (1991)

    Google Scholar 

  23. M. Steriade, Neuronal Substrates of Sleep and Epilepsy (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  24. E.L.M. van Luijtelaar, A. Bikbaev, Mid-frequency cortico-thalamic oscillations and the sleep cycle: genetic, time of day and age effects. Epilepsy Res. 73, 259 (2013)

    Article  Google Scholar 

  25. B. Lannes, G. Micheletti, M. Vergnes, C. Marescaux, A. Depaulis, J.M. Warter, Relationship between spike–wave discharges and vigilance levels in rats with spontaneous petit mal-like epilepsy. Neurosci. Lett. 94(1–2), 187 (1988)

    Google Scholar 

  26. A.M. Coenen, E.L.M. van Luijtelaar, Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav. Genet. 33, 635 (2003)

    Article  Google Scholar 

  27. P. Kellaway, Sleep and epilepsy. Epilepsia 26(suppl. 1), S15 (1985)

    Google Scholar 

  28. L.G. Sadleir, K. Farrell, S. Smith, M.B. Connolly, I.E. Scheffer, Electroclinical features of absence seizures in sleep. Epilepsy Res. 93 (2–3), 216 (2011)

    Google Scholar 

  29. D. Pinault, T.J. O’Brien, Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat. Syst. 3(3), 181 (2005)

    Google Scholar 

  30. P. Halasz, A. Kelemen, New vistas and views in the concept of generalized epilepsies. Deggyogyaszati Szle. Clin. Neurosci. 62(11–12), 366 (2009)

    Google Scholar 

  31. D. Pinault, A. Slezia, L. Acsady, Corticothalamic 5–9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats. J. Physiol. 574(Pt. 1), 209 (2006)

    Google Scholar 

  32. D. Pinault, M. Vergnes, C. Marescaux, Medium-voltage 5–9 Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181 (2001)

    Google Scholar 

  33. V.V. Grubov, A.A. Ovchinnikov, E. Sitnikova, A.A. Koronovskii, A.E. Hramov, Wavelet analysis of sleep spindles in EEG and development of method of its automatic identification. Appl. Nonlinear Dyn. 19(4), 91 (2011)

    MATH  Google Scholar 

  34. E. Sitnikova, A.E. Hramov, V.V. Grubov, A.A. Ovchinnkov, A.A. Koronovsky, On–off intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy. Brain Res. 1436, 147 (2012)

    Article  Google Scholar 

  35. G. Terrier, C.L. Gottesmann, Study of cortical spindles during sleep in the rat. Brain Res. Bull. 3, 701 (1978)

    Article  Google Scholar 

  36. E. Sitnikova, V.V. Grubov, A.E. Hramov, A.A. Koronovskii, Age-related changes in time–frequency structure of EEG sleep spindles in rats with genetic predisposition to absence epilepsy (WAG/Rij). J. High. Nerv. Act. 62(6), 733 (2011)

    Google Scholar 

  37. E. Sitnikova, A.E. Hramov, A.A. Koronovskii, E.L.M. van Luijtelaar, Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180, 304 (2009)

    Article  Google Scholar 

  38. W.R. Jankel, E. Niedermeyer, Sleep spindles. J. Clin. Neurophysiol. 2 (1), 1 (1985)

    Article  Google Scholar 

  39. M. Steriade, The corticothalamic system in sleep. Front. Biosci. 8, D878 (2003)

    Article  Google Scholar 

  40. A. Destexhe, D. Contreras, M. Steriade, Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79(2), 999 (1998)

    Google Scholar 

  41. I. Timofeev, M. Bazhenov, T. Sejnowski, M. Steriade, Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus Relat. Syst. 1, 53 (2001)

    Article  Google Scholar 

  42. M. Bonjean, T. Baker, M. Lemieux, I. Timofeev, T. Sejnowski, M. Bazhenov, Corticothalamic feedback controls sleep spindle duration in vivo. J. Neurosci. 31, 9124 (2011)

    Article  Google Scholar 

  43. J. Zygierewicz, Analysis of sleep spindles and model of their generation. PhD thesis, Warsaw University, Warsaw, 2000, brain.fuw.edu.pl/~jarek/PHD.pdf

  44. U. Strauss, M.H.P. Kole, A.U. Bräuer, J. Pahnke, R. Bajorat, A. Rolfs, R. Nitsch, R.A. Deisz, An impaired neocortical I h is associated with enhanced excitability and absence epilepsy. Eur. J. Neurosci. 19(11), 3048 (2004)

    Google Scholar 

  45. M. D’Antuono, Y. Inaba, G. Biagini, G. D’Arcangelo, V. Tancredi, M. Avoli, Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures. Genes Brain Behav. 5(1), 73 (2006)

    Google Scholar 

  46. G. Kaiser, A Friendly Guide to Wavelets (Springer/Birkhauser, Boston, 1994)

    MATH  Google Scholar 

  47. A.A. Koronovskii, A.E. Hramov, Continuous Wavelet Analysis and Its Applications (Fizmatlit, Moscow, 2003)

    Google Scholar 

  48. M. Latka, Z. Wast, A. Kozik, J. West, Wavelet analysis of epileptic spikes. Phys. Rev. E 67, 052902 (2003)

    Article  ADS  Google Scholar 

  49. H. Adeli, Z. Zhou, N. Dadmehr, Analyses of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69 (2003)

    Article  Google Scholar 

  50. L. Bonfiglio, S. Sello, P. Andre, M.C. Carboncini, P. Arrighi, B. Rossi, Blink-related delta oscillations in the resting-state EEG: a wavelet analysis. Neurosci. Lett. 449, 57 (2009)

    Article  Google Scholar 

  51. C. D’Avanzoa, V. Tarantinob, P. Bisiacchib, G. Sparacinoa, A wavelet methodology for EEG time–frequency analysis in a time discrimination task. Int. J. Bioelectromagn. 11(4), 185 (2009)

    Google Scholar 

  52. E.M. Schmidt, Computer separation of multi-unit neuroelectric data: a review. J. Neurosci. Methods 12, 95 (1984)

    Article  Google Scholar 

  53. M. Salganicoff, M. Sarna, L. Sax, G. Gerstein, Computer separations of multi-unit neuroelectric data: a review. J. Neurosci. Methods 25, 181 (1988)

    Article  Google Scholar 

  54. A.A. Koronovskii, E.L.M. van Luijtelaar, A.A. Ovchinnikov, E. Sitnikova, A.E. Hramov, Diagnostics and analysis of oscillatory neuronal network activity of brain with continuous wavelet analysis. Appl. Nonlinear Dyn. 19(1), 86 (2011)

    MATH  Google Scholar 

  55. L. Ke, R. Li, Classification of EEG signals by multi-scale filtering and PCA, in IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS’2009), Phoenix, 20–22 Nov 2009, pp. 362–366

    Google Scholar 

  56. L. Li, D. Xiong, X. Wu, Classification of imaginary movements in ECoG, in Fifth International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Wuhan, 10–12 May 2011, pp. 1–3

    Google Scholar 

  57. W.D. Penny, S.J. Roberts, E.A. Curran, M.J. Stokes, EEG-based communication: a pattern recognition approach. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 214 (2000)

    Article  Google Scholar 

  58. R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973)

    MATH  Google Scholar 

  59. M.R. Kousarrizi, A.A. Ghanbari, M. Teshnehlab, M. Aliyari, A. Gharaviri, Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces, in International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009 (IJCBS’09), Shanghai, 3–5 Aug 2009, pp. 352–355

    Google Scholar 

  60. T. Bassani, J.C. Nievola, Pattern recognition for brain–computer interface on disabled subjects using a wavelet transformation, in IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’08), Sun Valley, 15–17 Sept 2008, pp. 180–186

    Google Scholar 

  61. V.A. Gusev, A.A. Koronovskii, A.E. Hramov, Application of adaptive wavelet bases to analysis of nonlinear systems with chaotic dynamics. Tech. Phys. Lett. 29(18), 61 (2003)

    Google Scholar 

  62. P.J. Durka, Time–frequency analysis of EEG. PhD thesis, Warsaw University, Warsaw, 1996, brain.fuw.edu.pl/~durka/dissertation/

  63. J. Zygierewicz, K.J. Blinowska, P.J. Durka, W. Szelenberger, S. Niemcewicz, W. Androsiuk, High resolution study of sleep spindles. Clin. Neurophysiol. 110, 2136 (1999)

    Article  Google Scholar 

  64. P.J. Durka, From wavelets to adaptive approximations: time–frequency parametrization of EEG. IEEE Trans. Biomed. Eng. 2, 1 (2003)

    Google Scholar 

  65. P.J. Durka, U. Malinowska, W. Szelenberger, A. Wakarow, K.J. Blinowska, High resolution parametric description of slow-wave sleep. J. Neurosci. Methods 147, 15 (2005)

    Article  Google Scholar 

  66. R. Brunelli, Template Matching Techniques in Computer Vision: Theory and Practice (Wiley, Chichester, 2009)

    Book  Google Scholar 

  67. E. Sitnikova, E.L.M. van Luijtelaar, Cortical and thalamic coherence during spike–wave seizures in WAG/Rij rats. Epilepsy Res. 71, 159 (2006)

    Article  Google Scholar 

  68. G. Buzsaki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926 (2004)

    Article  ADS  Google Scholar 

  69. N.E. Sviderskaya, Synchronous Electrical Activity of Brain and Psychic Processes (Nauka, Moscow, 1987)

    Google Scholar 

  70. A.A. Ovchinnikov, T.P. Evstigneeva, A.A. Koronovskii, E. Sitnikova, A.O. Manturov, A.E. Hramov, Dynamics of hypersynchronous epileptic discharges in EEG in patients with absence epilepsy, in Proceedings of Conference “Nonlinear Dynamics in Cognitive Studies”, Institute of Applied Physics of Russian Academy of Science, Nizhnij Novgorod, Russian Federation, 2011, pp. 140–142

    Google Scholar 

  71. C.P. Panayiotopoulos, Typical absence seizures and their treatment. Arch. Dis. Child. 81(4), 351 (1999)

    Google Scholar 

  72. T. Deonna, Management of epilepsy. Arch. Dis. Child. 90(1), 5 (2005)

    Article  Google Scholar 

  73. I. Westmijse, P. Ossenblok, B. Gunning, E.L.M. van Luijtelaar, Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50, 2538 (2009)

    Article  Google Scholar 

  74. V.V. Gnezditskii, The Inverse Problem of EEG and Clinical Encephalography (Taganrog University Press, Taganrog, 2000)

    Google Scholar 

  75. P.A. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.-J. Freund, Detection of n​: ​ mphase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81(15), 3291 (1998)

    Google Scholar 

  76. P.A. Tass, T. Fieseler, J. Dammers, K.T. Dolan, P. Morosan, M. Majtanik, F. Boers, A. Muren, K. Zilles, G.R. Fink, Synchronization tomography: a method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Phys. Rev. Lett. 90(8), 088101 (2003)

    Google Scholar 

  77. P. Gong, A.R. Nikolaev, C. van Leeuwen, Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. Phys. Rev. E 76(1), 011904 (2007)

    Google Scholar 

  78. I.S. Midzianovskaia, G.D. Kuznetsova, A.M. Coenen, A.M. Spiridonov, E.L.M van Luijtelaar, Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats. Brain Res. 911, 62 (2001)

    Google Scholar 

  79. H.K. Meeren, J.P. Pijn, E.L.M. van Luijtelaar, A.M. Coenen, F.H. Lopes da Silva, Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci. 22, 1480 (2002)

    Google Scholar 

  80. N.E. Sviderskaya, T.N. Dashinskaja, G.V. Taratunova, Spatial organization of EEG activation during the creative processes. J. High. Nerv. Act. 51, 393 (2001)

    Google Scholar 

  81. V.N. Dumenko, High-Frequency Components in EEG and Instrumental Learning (Science, Moscow, 2006)

    Google Scholar 

  82. V.N. Dumenko, The phenomenon of spatial synchronization between the potentials of the cerebral cortex in a wide frequency band 1–250 Hz. J. Neurosci. Methods 55(5), 520 (2007)

    Google Scholar 

  83. N.E. Sviderskaya, Spatial Organization of Electroencephalogram (VGMA Press, Voronezh, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E. (2015). Time–Frequency Analysis of EEG: From Theory to Practice. In: Wavelets in Neuroscience. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43850-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43850-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43849-7

  • Online ISBN: 978-3-662-43850-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics