Skip to main content

Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II

  • Conference paper
  • First Online:
Book cover Conformal Field Theory, Automorphic Forms and Related Topics

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 8))

Abstract

We study n-point correlation functions for a vertex operator algebra V on a Riemann surface of genus 2 obtained by attaching a handle to a torus. We obtain closed formulas for the genus two partition function for free bosonic theories and lattice vertex operator algebras V L and describe their holomorphic and modular properties. We also compute the genus two Heisenberg vector n-point function and the Virasoro vector one point function. Comparing with the companion paper, when a pair of tori are sewn together, we show that the partition functions are not compatible in the neighborhood of a two-tori degeneration point. The normalized partition functions of a lattice theory V L are compatible, each being identified with the genus two Siegel theta function of L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reference [20] together with the present paper constitute a much expanded version of [21].

  2. 2.

    Here we include an additional subscript of either ε or ρ to distinguish between the two formalisms.

  3. 3.

    Note that d is denoted by β in [18].

  4. 4.

    Denoted by ω in Sect. 6.2 of [18].

  5. 5.

    Two graphs are isomorphic if they have the same labelled vertices and directed edges.

  6. 6.

    Note: in [17] the functional dependence on β, here denoted by a superscript, was omitted.

References

  1. Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett. 168B, 202–206 (1986)

    MathSciNet  Google Scholar 

  2. Borcherds, R.E.: Vertex algebras. Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. 83, 3068–3071 (1986)

    Article  MathSciNet  Google Scholar 

  3. Dolan, L., Goddard, P., Montague, P.: Conformal field theories, representations and lattice constructions. Commun. Math. Phys. 179, 61–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1980)

    Book  MATH  Google Scholar 

  5. Fay, J.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352. Springer, Berlin/New York (1973)

    Google Scholar 

  6. Freidan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory. Nucl. Phys. B281, 509–545 (1987)

    Article  Google Scholar 

  7. Freitag, E.: Siegelische Modulfunktionen. Springer, Berlin/New York (1983)

    Book  Google Scholar 

  8. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Academic, New York (1988)

    MATH  Google Scholar 

  9. Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104 (1993)

    Google Scholar 

  10. Green, M., Schwartz, J., Witten, E.: Superstring Theory I. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Gunning, R.C.: Lectures on Riemann Surfaces. Princeton University Press, Princeton (1966)

    MATH  Google Scholar 

  12. Hurley, D., Tuite, M.P.: On the torus degeneration of the genus two partition function. Int. J. Math. 24, 1350056 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10. American Mathematical Society, Providence (1998)

    Google Scholar 

  14. Knizhnik, V.G.: Multiloop amplitudes in the theory of quantum strings and complex geometry. Sov. Phys. Usp. 32, 945–971 (1989); Sov. Sci. Rev. A 10, 1–76 (1989)

    Google Scholar 

  15. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  16. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Alg. 96, 279–297 (1994)

    Article  MATH  Google Scholar 

  17. Mason, G., Tuite, M.P.: Torus chiral n-point functions for free boson and lattice vertex operator algebras. Commun. Math. Phys. 235, 47–68 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mason, G., Tuite, M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587–634 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mason, G., Tuite, M.P.: Partition functions and chiral algebras. Contemp. Math. 442, 401–410 (2007)

    Article  MathSciNet  Google Scholar 

  20. Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I. Commun. Math. Phys. 300, 673–713 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mason, G., Tuite, M.P.: The genus two partition function for free bosonic and lattice vertex operator algebras. arXiv:0712.0628 (unpublished)

    Google Scholar 

  22. Mason, G., Tuite, M.P.: Vertex operators and modular forms. In: Kirsten, K., Williams, F. (eds.) A Window into Zeta and Modular Physics. MSRI Publications, vol. 57, pp. 183–278. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  23. Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields. Math. Soc. Jpn. Mem. 4 (1999)

    Google Scholar 

  24. McIntyre, A., Takhtajan, L.A.: Holomorphic factorization of determinants of Laplacians on Riemann surfaces and higher genus generalization of Kronecker’s first limit formula. GAFA, Geom. Funct. Anal. 16, 1291–1323 (2006)

    Google Scholar 

  25. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mumford, D.: Stability of projective varieties. L. Ens. Math. 23, 39–110 (1977)

    MATH  MathSciNet  Google Scholar 

  27. Mumford, D.: Tata Lectures on Theta I and II. Birkhäuser, Boston (1983)

    Book  Google Scholar 

  28. Nelson, P.: Lectures on strings and moduli space. Phys. Rep. 149, 337–375 (1987)

    Article  MathSciNet  Google Scholar 

  29. Polchinski, J.: String Theory I. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  30. Serre, J.-P.: A Course in Arithmetic. Springer, Berlin (1978)

    MATH  Google Scholar 

  31. Sonoda, H.: Sewing conformal field theories I. Nucl. Phys. B311, 401–416 (1988)

    Article  MathSciNet  Google Scholar 

  32. Sonoda, H.: Sewing conformal field theories II. Nucl. Phys. B311, 417–432 (1988)

    Article  MathSciNet  Google Scholar 

  33. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. 19, 459–566 (1989)

    MathSciNet  Google Scholar 

  34. Tuite, M.P: Genus two meromorphic conformal field theory. CRM Proc. Lect. Notes 30, 231–251 (2001)

    MathSciNet  Google Scholar 

  35. Ueno, K.: Introduction to conformal field theory with gauge symmetries. In: Geometry and Physics - Proceedings of the Conference at Aarhus University, Aaarhus. Marcel Dekker, New York (1997)

    Google Scholar 

  36. Yamada, A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3, 114–143 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Geoffrey Mason was supported by the NSF and NSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Tuite .

Editor information

Editors and Affiliations

Appendix

Appendix

We list here some corrections to [17] and [18] that we needed above.

  1. (a)

    Display (27) of [17] should read

    $$\displaystyle{ \epsilon (\alpha,-\alpha ) =\epsilon (\alpha,\alpha ) = (-1)^{(\alpha,\alpha )/2}. }$$
    (132)
  2. (b)

    Display (45) of [17] should read

    $$\displaystyle{ \gamma (\varXi ) = (a,\delta _{r,1}\beta + C(r,0,\tau )\alpha _{k} +\sum _{l\neq k}D(r,0,z_{kl},\tau )\alpha _{l}). }$$
    (133)
  3. (c)

    As a result of (a), displays (79) and (80) of [17] are modified and now read

    $$\displaystyle\begin{array}{rcl} F_{N}(\mathrm{e}^{\alpha },z_{1};\mathrm{e}^{-\alpha },z_{ 2};q)& =& \epsilon (\alpha,-\alpha )\frac{q^{(\beta,\beta )/2}} {\eta ^{l}(\tau )} \frac{\exp ((\beta,\alpha )z_{12})} {K(z_{12},\tau )^{(\alpha,\alpha )}}, {}\end{array}$$
    (134)
    $$\displaystyle\begin{array}{rcl} F_{V _{L}}(\mathrm{e}^{\alpha },z_{1};\mathrm{e}^{-\alpha },z_{ 2};q)& =& \epsilon (\alpha,-\alpha ) \frac{1} {\eta ^{l}(\tau )} \frac{\varTheta _{\alpha,L}(\tau,z_{12}/2\pi \mathrm{i})} {K(z_{12},\tau )^{(\alpha,\alpha )}}. {}\end{array}$$
    (135)
  4. (d)

    The expression for ε(τ, w, χ) of display (172) of [18] should read

    $$\displaystyle{ \epsilon (\tau,w,\chi ) = -w\sqrt{1 - 4\chi }\left (1 + \frac{1} {24}w^{2}E_{ 2}(\tau )(1 - 4\chi ) + O(w^{4})\right ) }$$
    (136)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mason, G., Tuite, M.P. (2014). Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II. In: Kohnen, W., Weissauer, R. (eds) Conformal Field Theory, Automorphic Forms and Related Topics. Contributions in Mathematical and Computational Sciences, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43831-2_7

Download citation

Publish with us

Policies and ethics