Skip to main content

Extended Griess Algebras and Matsuo-Norton Trace Formulae

  • Conference paper
  • First Online:
Conformal Field Theory, Automorphic Forms and Related Topics

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 8))

Abstract

We introduce the \(\mathbb{Z}_{2}\)-extended Griess algebra of a vertex operator superalgebra with an involution and derive the Matsuo-Norton trace formulae for the extended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and N = 1 c = 7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  2. Dong, C., Nagatomo, K.: Classification of irreducible modules for the vertex operator algebra M(1)+. J. Algebra 216, 384–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dong, C. Li, H., Mason, G.: Some twisted sectors for the Moonshine module. In: Moonshine, the Monster, and Related Topics, South Hadley, 1994. Contemporary Mathematics, vol. 193, pp. 25–43. American Mathematical Society, Providence (1996)

    Google Scholar 

  4. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representation of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frenkel, I.B., Lepowsky, J. Meurman, A.: Vertex Operator Algebras and the Monster. Academic, New York (1988)

    MATH  Google Scholar 

  6. Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On Axiomatic Approaches to Vertex Operator Algebras and Modules. Memoirs of the American Mathematical Society, vol. 104. American Mathematical Society, Providence (1993)

    Google Scholar 

  7. Griess, R.L.: The vertex operator algebra related to E 8 with automorphism group O+(10, 2), The Monster and Lie algebras, Ohio State Univ. Math. Res. Inst. Publ. 7, 43–58 (1998)

    Google Scholar 

  8. Höhn, G.: Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Ph.D. thesis, Bonn (1995), Bonner Mathematische Schriften, 286, 1–85 (1996). arXiv:0706.0236

  9. Höhn, G.: The group of symmetries of the shorter moonshine module. Abh. Math. Semin. Univ. Hambg. 80(2), 275–283 (2010). arXiv:math/0210076

  10. Höhn, G.: Generalized moonshine for the Baby Monster. Preprint, May 2003. http://www.math.ksu.edu/ gerald/papers/baby8.ps

  11. Höhn, G.: Conformal designs based on vertex operator algebras. Adv. Math. 217, 2301–2335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Höhn, G., Lam, C.H., Yamauchi, H.: McKay’s E 7 observation on the Babymonster. Int. Math. Res. Not. 2012, 166–212 (2012). doi:10.1093/imrn/rnr009

    MATH  Google Scholar 

  13. Kac, V.G.: Vertex Algebras for Beginners. University Lecture Series, vol. 10. American Mathematical Society, Providence (1997)

    Google Scholar 

  14. Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie algebras. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  15. Lam, C.H.: Code vertex operator algebras under coordinate change. Commun. Algebra 27, 4587–4605 (1999)

    Article  MATH  Google Scholar 

  16. Lam, C.H., Lam, N., Yamauchi, H.: Extension of unitary Virasoro vertex operator algebra by a simple module. Int. Math. Res. Not. 11, 577–611 (2003)

    Article  MathSciNet  Google Scholar 

  17. Lam, C.H., Sakuma, S., Yamauchi, H.: Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z. 255(3), 597–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96, 279–297 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, H.: Regular representation, Zhu’s A(V )-theory, and induced modules. J. Algebra 238, 159–193 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, H., Xu, X.: A characterization of vertex algebra associated to even lattices. J. Algebra 173, 253–270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matsuo, A., Matsuo, M.: The automorphism group of the Hamming code vertex operator algebra. J. Algebra 228, 204–226 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsuo, A.: Norton’s trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry. Commun. Math. Phys. 224, 565–591 (2001)

    Article  MathSciNet  Google Scholar 

  23. Miyamoto, M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 528–548 (1996)

    Article  MathSciNet  Google Scholar 

  24. Primc, M.: Vertex algebras generalized by Lie algebras. J. Pure Appl. Algebra 135, 253–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Scheithauer, N.: Vertex algebras Lie algebras, and superstrings. J. Algebra 200, 363–403 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shimakura, H.: The automorphism group of the vertex operator algebra \(V _{L}^{+}\) for an even lattice without roots. J. Algebra 280, 29–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shimakura, H.: Classification of Ising vectors in the vertex operator algebra \(V _{L}^{+}\). Pac. J. Math. 258, 487–495 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 71, 197–211 (1993)

    Article  Google Scholar 

  29. Yamauchi, H.: 2A-orbifold construction and the baby-monster vertex operator superalgebra. J. Algebra 284, 645–668 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zamolodchikov, A.B.: Infinite additional symmetries in two dimensional conformal quantum field theory. Theor. Math. Phys. 65, 1205 (1985)

    Article  MathSciNet  Google Scholar 

  31. Zhu, Y.: Modular invariance of characters of vertex operator algebras, J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Professor Atsushi Matsuo for stimulating discussions and for his Mathematica programs. He also thanks Professor Masahiko Miyamoto for valuable comments. Most of the results of this paper were obtained by using computer. The author used a computer algebra system Risa/Asir for Windows. This work was supported by JSPS Grant-in-Aid for Young Scientists (Start-up) No. 19840025 and (B) No. 21740011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamauchi .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Coefficients in Generalized Casimir Vectors

\(A_{[2]}^{(2)} = 2 {\ast} h {\ast} d\), \(A_{[3]}^{(3)} = h {\ast} d\), \(A_{[4]}^{(4)} = 3 {\ast} h {\ast} d {\ast} (c - 2 {\ast} h + 4)\), \(A_{[2,2]}^{(4)} = 2 {\ast} h {\ast} (5 {\ast} h + 1) {\ast} d\), \(A_{[5]}^{(5)} = 2 {\ast} h {\ast} d {\ast} (c - 2 {\ast} h + 4)\), \(A_{[3,2]}^{(5)} = 2 {\ast} h {\ast} (5 {\ast} h + 1) {\ast} d\), \(A_{[6]}^{(6)} = 4{\ast}h{\ast}d{\ast}(5{\ast}c^{3}+(-15{\ast}h+65){\ast}c^{2}+(-20{\ast}h^{2}-148{\ast}h+148){\ast}c-26{\ast}h^{2}+98{\ast}h-92)\), \(A_{[4,2]}^{(6)} = 2{\ast}h{\ast}d{\ast}((42{\ast}h+8){\ast}c^{2} +(-84{\ast}h^{2} +349{\ast}h+65){\ast}c-134{\ast}h^{2} -86{\ast}h-40)\), \(A_{[3,3]}^{(6)} = (1/2){\ast}h{\ast}d{\ast}((70{\ast}h+15){\ast}c^{2} +(614{\ast}h+136){\ast}c+248{\ast}h^{2} -464{\ast}h-64)\), \(A_{[2,2,2]}^{(6)} = (4/3) {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(A_{[7]}^{(7)} = 3{\ast}h{\ast}d{\ast}(5{\ast}c^{3}+(-15{\ast}h+65){\ast}c^{2}+(-20{\ast}h^{2}-148{\ast}h+148){\ast}c-26{\ast}h^{2}+98{\ast}h-92)\), \(A_{[5,2]}^{(7)} = 2{\ast}h{\ast}d{\ast}((28{\ast}h+5){\ast}c^{2} +(-56{\ast}h^{2} +243{\ast}h+41){\ast}c-172{\ast}h^{2} -16{\ast}h-28)\), \(A_{[4,3]}^{(7)} = 3{\ast}h{\ast}d{\ast}((14{\ast}h+3){\ast}c^{2} +(-28{\ast}h^{2} +106{\ast}h+24){\ast}c+38{\ast}h^{2} -70{\ast}h-12)\), \(A_{[3,2,2]}^{(7)} = 2 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(A_{[8]}^{(8)} = (1/2){\ast}h{\ast}d{\ast}(350{\ast}c^{5}+(-1260{\ast}h+10080){\ast}c^{4}+(-560{\ast}h^{2}-31735{\ast}h+85005){\ast}c^{3}+(-5040{\ast}h^{3}-17240{\ast}h^{2}-192290{\ast}h+194494){\ast}c^{2}+(-18520{\ast}h^{3}-43840{\ast}h^{2}+20928{\ast}h-8184){\ast}c+4344{\ast}h^{3}-32496{\ast}h^{2}+76488{\ast}h-57744)\), A [6, 2] (8) = 2∗hd∗((300∗h+50)∗c 4+(−900∗h 2+7312∗h+1176)∗c 3+(−1200∗h 3−18548∗h 2+42969∗h+6081)∗c 2+(−4552∗h 3−52960∗h 2+32406∗h−1466)∗c−536∗h 3−26880∗h 2+5696∗h−2808), \(A_{[5,3]}^{(8)} = (1/2){\ast}h{\ast}d{\ast}((840{\ast}h+175){\ast}c^{4}+(-1680{\ast}h^{2}+19885{\ast}h+4188){\ast}c^{3}+(-25392{\ast}h^{2}+107936{\ast}h+23184){\ast}c^{2}+(-2016{\ast}h^{3}+1832{\ast}h^{2}+4060{\ast}h+968){\ast}c+7792{\ast}h^{3}+1776{\ast}h^{2}-31312{\ast}h-6816)\), \(A_{[4,4]}^{(8)} = (3/2){\ast}h{\ast}d{\ast}((126{\ast}h+28){\ast}c^{4}+(-504{\ast}h^{2}+2787{\ast}h+643){\ast}c^{3}+(504{\ast}h^{3}-7156{\ast}h^{2}+13198{\ast}h+3338){\ast}c^{2}+(3180{\ast}h^{3}+2372{\ast}h^{2}-2480{\ast}h+344){\ast}c-2004{\ast}h^{3}+7248{\ast}h^{2}-6036{\ast}h-888)\), \(A_{[4,2,2]}^{(8)} = 2{\ast}h{\ast}d{\ast}((630{\ast}h^{2}+366{\ast}h+68){\ast}c^{3}+(-1260{\ast}h^{3}+9159{\ast}h^{2}+4793{\ast}h+958){\ast}c^{2}+(-6942{\ast}h^{3}+11417{\ast}h^{2}-3187{\ast}h+210){\ast}c+1114{\ast}h^{3}-654{\ast}h^{2}-3064{\ast}h-168)\), \(A_{[3,3,2]}^{(8)} = h{\ast}d{\ast}((1050{\ast}h^{2}+645{\ast}h+125){\ast}c^{3}+(16700{\ast}h^{2}+9170{\ast}h+1934){\ast}c^{2}+(3720{\ast}h^{3}+15510{\ast}h^{2}-8662{\ast}h+716){\ast}c-1016{\ast}h^{3}+6444{\ast}h^{2}-8692{\ast}h-264)\), \(A_{[2,2,2,2]}^{(8)} = (2/3){\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(A_{[9]}^{(9)} = (2/3){\ast}h{\ast}d{\ast}(210{\ast}c^{5}+(-756{\ast}h+6048){\ast}c^{4}+(-756{\ast}h^{2}-19311{\ast}h+50949){\ast}c^{3}+(-5544{\ast}h^{3}-19676{\ast}h^{2}-120486{\ast}h+115622){\ast}c^{2}+(-23508{\ast}h^{3}-30448{\ast}h^{2}+18372{\ast}h-5456){\ast}c+4428{\ast}h^{3}-26232{\ast}h^{2}+52020{\ast}h-34536)\), \(A_{[7,2]}^{(9)} = 2{\ast}h{\ast}d{\ast}((225{\ast}h+35){\ast}c^{4}+(-675{\ast}h^{2}+5565{\ast}h+826){\ast}c^{3}+(-900{\ast}h^{3}-14615{\ast}h^{2}+33776{\ast}h+4267){\ast}c^{2}+(-2910{\ast}h^{3}-49778{\ast}h^{2}+29666{\ast}h-1378){\ast}c-2350{\ast}h^{3}-23916{\ast}h^{2}+6718{\ast}h-2196)\), \(A_{[6,3]}^{(9)} = 4{\ast}h{\ast}d{\ast}((75{\ast}h+15){\ast}c^{4}+(-225{\ast}h^{2}+1747{\ast}h+350){\ast}c^{3}+(-300{\ast}h^{3}-3933{\ast}h^{2}+9193{\ast}h+1814){\ast}c^{2}+(-1642{\ast}h^{3}-3182{\ast}h^{2}+2740{\ast}h-88){\ast}c+1814{\ast}h^{3}-2964{\ast}h^{2}-1022{\ast}h-612)\), \(A_{[5,4]}^{(9)} = 2{\ast}h{\ast}d{\ast}((126{\ast}h+28){\ast}c^{4}+(-504{\ast}h^{2}+2787{\ast}h+643){\ast}c^{3}+(504{\ast}h^{3}-7156{\ast}h^{2}+13198{\ast}h+3338){\ast}c^{2}+(3180{\ast}h^{3}+2372{\ast}h^{2}-2480{\ast}h+344){\ast}c-2004{\ast}h^{3}+7248{\ast}h^{2}-6036{\ast}h-888)\), \(A_{[5,2,2]}^{(9)} = 4{\ast}h{\ast}d{\ast}((210{\ast}h^{2}+117{\ast}h+21){\ast}c^{3}+(-420{\ast}h^{3}+3208{\ast}h^{2}+1602{\ast}h+302){\ast}c^{2}+(-3554{\ast}h^{3}+4166{\ast}h^{2}-784{\ast}h+40){\ast}c+710{\ast}h^{3}-1032{\ast}h^{2}-746{\ast}h-60)\), \(A_{[4,3,2]}^{(9)} = 2{\ast}h{\ast}d{\ast}((630{\ast}h^{2}+381{\ast}h+73){\ast}c^{3}+(-1260{\ast}h^{3}+8694{\ast}h^{2}+4780{\ast}h+1010){\ast}c^{2}+(-3222{\ast}h^{3}+10336{\ast}h^{2}-4022{\ast}h+300){\ast}c+98{\ast}h^{3}+1788{\ast}h^{2}-3890{\ast}h-156)\), \(A_{[3,3,3]}^{(9)} = (1/6){\ast}h{\ast}d{\ast}((1050{\ast}h^{2}+675{\ast}h+135){\ast}c^{3}+(15770{\ast}h^{2}+9144{\ast}h+2038){\ast}c^{2}+(11160{\ast}h^{3}+13348{\ast}h^{2}-10332{\ast}h+896){\ast}c-3048{\ast}h^{3}+11328{\ast}h^{2}-10344{\ast}h-240)\), \(A_{[3,2,2,2]}^{(9)} = (4/3){\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(A_{[10]}^{(10)} = (6/5){\ast}h{\ast}d{\ast}(1050{\ast}c^{6}+(-4200{\ast}h+52290){\ast}c^{5}+(-3150{\ast}h^{2}-195019{\ast}h+888199){\ast}c^{4}+(-31500{\ast}h^{3}-160243{\ast}h^{2}-2900235{\ast}h+5888368){\ast}c^{3}+(-33600{\ast}h^{4}-876400{\ast}h^{3}-2224448{\ast}h^{2}-13733560{\ast}h+11872408){\ast}c^{2}+(-189616{\ast}h^{4}-3013900{\ast}h^{3}-3958988{\ast}h^{2}+2767600{\ast}h-800016){\ast}c-29792{\ast}h^{4}+816800{\ast}h^{3}-3744448{\ast}h^{2}+6247744{\ast}h-3575424)\), A [8, 2] (10) = (1∕5)∗hd∗((19250∗h+2800)∗c 5+(−69300∗h 2+881440∗h+124040)∗c 4+(−30800∗h 3−2898185∗h 2+12963179∗h+1696856)∗c 3+(−277200∗h 4−1275240∗h 3−35996682∗h 2+64729982∗h+6705400)∗c 2+(−2026600∗h 4−3142080∗h 3−112130808∗h 2+64543216∗h−3235248)∗c−335864∗h 4−8601520∗h 3−49036936∗h 2+17453488∗h−4052928), \(A_{[7,3]}^{(10)} = (3/10){\ast}h{\ast}d{\ast}((8250{\ast}h+1575){\ast}c^{5}+(-24750{\ast}h^{2}+368615{\ast}h+70030){\ast}c^{4}+(-33000{\ast}h^{3}-978660{\ast}h^{2}+5161264{\ast}h+966596){\ast}c^{3}+(-814640{\ast}h^{3}-10273412{\ast}h^{2}+22761712{\ast}h+3992640){\ast}c^{2}+(-103200{\ast}h^{4}-2524680{\ast}h^{3}-14390328{\ast}h^{2}+9889536{\ast}h-487008){\ast}c+139456{\ast}h^{4}+5842880{\ast}h^{3}-11650816{\ast}h^{2}-447872{\ast}h-1475328)\), \(A_{[6,4]}^{(10)} = (12/5){\ast}h{\ast}d{\ast}((825{\ast}h+180){\ast}c^{5}+(-4125{\ast}h^{2}+35248{\ast}h+7832){\ast}c^{4}+(1650{\ast}h^{3}-149899{\ast}h^{2}+456809{\ast}h+104870){\ast}c^{3}+(6600{\ast}h^{4}+60200{\ast}h^{3}-1328561{\ast}h^{2}+1698137{\ast}h+418354){\ast}c^{2}+(67132{\ast}h^{4}+339830{\ast}h^{3}-202982{\ast}h^{2}-47264{\ast}h+18184){\ast}c-33620{\ast}h^{4}-77560{\ast}h^{3}+609380{\ast}h^{2}-579320{\ast}h-120480)\), \(A_{[6,2,2]}^{(10)} = (4/5){\ast}h{\ast}d{\ast}((8250{\ast}h^{2}+4400{\ast}h+760){\ast}c^{4}+(-24750{\ast}h^{3}+296210{\ast}h^{2}+151096{\ast}h+26364){\ast}c^{3}+(-33000{\ast}h^{4}-801290{\ast}h^{3}+2704347{\ast}h^{2}+1191343{\ast}h+213790){\ast}c^{2}+(-232460{\ast}h^{4}-4589320{\ast}h^{3}+3842818{\ast}h^{2}-286646{\ast}h-11132){\ast}c+28644{\ast}h^{4}+857640{\ast}h^{3}-1710804{\ast}h^{2}-212088{\ast}h-52032)\), \(A_{[5,5]}^{(10)} = (1/5){\ast}h{\ast}d{\ast}((4620{\ast}h+1050){\ast}c^{5}+(-18480{\ast}h^{2}+198719{\ast}h+46201){\ast}c^{4}+(18480{\ast}h^{3}-639607{\ast}h^{2}+2606009{\ast}h+632228){\ast}c^{3}+(443400{\ast}h^{3}-5076574{\ast}h^{2}+9773262{\ast}h+2648692){\ast}c^{2}+(41376{\ast}h^{4}+1074560{\ast}h^{3}+4481200{\ast}h^{2}-3129584{\ast}h+288608){\ast}c+293648{\ast}h^{4}-2776160{\ast}h^{3}+7129072{\ast}h^{2}-5166496{\ast}h-672384)\), \(A_{[5,3,2]}^{(10)} = (1/5){\ast}h{\ast}d{\ast}((46200{\ast}h^{2}+27115{\ast}h+5075){\ast}c^{4}+(-92400{\ast}h^{3}+1636765{\ast}h^{2}+922753{\ast}h+178072){\ast}c^{3}+(-2371200{\ast}h^{3}+14798146{\ast}h^{2}+7158654{\ast}h+1515620){\ast}c^{2}+(-110880{\ast}h^{4}-9063800{\ast}h^{3}+17179184{\ast}h^{2}-5440168{\ast}h+338704){\ast}c-319088{\ast}h^{4}+2238560{\ast}h^{3}-652432{\ast}h^{2}-4969184{\ast}h-254976)\), \(A_{[4,4,2]}^{(10)} = (3/5){\ast}h{\ast}d{\ast}((6930{\ast}h^{2}+4180{\ast}h+800){\ast}c^{4}+(-27720{\ast}h^{3}+226185{\ast}h^{2}+133283{\ast}h+26662){\ast}c^{3}+(27720{\ast}h^{4}-631060{\ast}h^{3}+1836386{\ast}h^{2}+928514{\ast}h+211140){\ast}c^{2}+(337140{\ast}h^{4}-1677780{\ast}h^{3}+2472564{\ast}h^{2}-812508{\ast}h+53544){\ast}c+100532{\ast}h^{4}-226520{\ast}h^{3}+432268{\ast}h^{2}-745384{\ast}h-34656)\), \(A_{[4,3,3]}^{(10)} = (3/10){\ast}h{\ast}d{\ast}((11550{\ast}h^{2}+7425{\ast}h+1485){\ast}c^{4}+(-23100{\ast}h^{3}+389020{\ast}h^{2}+243566{\ast}h+51294){\ast}c^{3}+(-426920{\ast}h^{3}+3236462{\ast}h^{2}+1740898{\ast}h+429980){\ast}c^{2}+(-81840{\ast}h^{4}+1025620{\ast}h^{3}+3455108{\ast}h^{2}-2154976{\ast}h+167248){\ast}c-17296{\ast}h^{4}-522560{\ast}h^{3}+2125936{\ast}h^{2}-1996768{\ast}h-52992)\), \(A_{[4,2,2,2]}^{(10)} = 4{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+2706{\ast}h^{2}+1276{\ast}h+224){\ast}c^{3}+(-4620{\ast}h^{4}+48797{\ast}h^{3}+50252{\ast}h^{2}+22925{\ast}h+4434){\ast}c^{2}+(-47038{\ast}h^{4}+140169{\ast}h^{3}-6264{\ast}h^{2}-27525{\ast}h+2578){\ast}c-4966{\ast}h^{4}+9340{\ast}h^{3}+15382{\ast}h^{2}-28252{\ast}h-288)\), \(A_{[3,3,2,2]}^{(10)} = h{\ast}d{\ast}((11550{\ast}h^{3}+14025{\ast}h^{2}+6809{\ast}h+1222){\ast}c^{3}+(274840{\ast}h^{3}+284503{\ast}h^{2}+133429{\ast}h+26346){\ast}c^{2}+(40920{\ast}h^{4}+764986{\ast}h^{3}-116882{\ast}h^{2}-177916{\ast}h+18992){\ast}c+8648{\ast}h^{4}-92288{\ast}h^{3}+251080{\ast}h^{2}-201520{\ast}h-1344)\), \(A_{[2,2,2,2,2]}^{(10)} = (4/15){\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\).

1.2 Coefficients in the Trace Formulae

\(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2}) = (a^{0}\vert \omega )(a^{1}\vert a^{2}) + (a^{1}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{1}\vert a^{3})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{2})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{0}\vert a^{3}) + (a^{1}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2}\vert a^{3}) = (a^{0}\vert \omega )(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{0}\vert a^{1}\vert a^{3})+(a^{3}\vert \omega )(a^{0}\vert a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert a^{1})(a^{2}\vert a^{3}) = (a^{0}\vert a^{1})(a^{2}\vert a^{3}) + (a^{0}\vert a^{2})(a^{1}\vert a^{3}) + (a^{0}\vert a^{3})(a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{3}\vert \omega )(a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{4}\vert \omega )(a^{2}\vert a^{3})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{4})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{3})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{2})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{4}) + (a^{1}\vert \omega )(a^{2}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{3}) + (a^{1}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{1}\vert a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{0}\vert a^{3}\vert a^{4})+(a^{1}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{2}\vert a^{4})+(a^{1}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{1}\vert a^{4}) + (a^{2}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1}\vert a^{3}) + (a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2})(a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert a^{2})(a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert a^{3})(a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert a^{4})(a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{0}\vert a^{2})(a^{3}\vert a^{4})+(a^{1}\vert \omega )(a^{0}\vert a^{3})(a^{2}\vert a^{4})+(a^{1}\vert \omega )(a^{0}\vert a^{4})(a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{0}\vert a^{1})(a^{3}\vert a^{4})+(a^{2}\vert \omega )(a^{0}\vert a^{3})(a^{1}\vert a^{4})+(a^{2}\vert \omega )(a^{0}\vert a^{4})(a^{1}\vert a^{3})+(a^{3}\vert \omega )(a^{0}\vert a^{1})(a^{2}\vert a^{4})+(a^{3}\vert \omega )(a^{0}\vert a^{2})(a^{1}\vert a^{4})+(a^{3}\vert \omega )(a^{0}\vert a^{4})(a^{1}\vert a^{2})+(a^{4}\vert \omega )(a^{0}\vert a^{1})(a^{2}\vert a^{3})+(a^{4}\vert \omega )(a^{0}\vert a^{2})(a^{1}\vert a^{3}) + (a^{4}\vert \omega )(a^{0}\vert a^{3})(a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert a^{1})(a^{2}\vert a^{3}\vert a^{4}) = (a^{0}\vert a^{1})(a^{2}\vert a^{3}\vert a^{4})+(a^{0}\vert a^{2})(a^{1}\vert a^{3}\vert a^{4})+(a^{0}\vert a^{3})(a^{1}\vert a^{2}\vert a^{4})+(a^{0}\vert a^{4})(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert a^{2})(a^{0}\vert a^{3}\vert a^{4})+(a^{1}\vert a^{3})(a^{0}\vert a^{2}\vert a^{4})+(a^{1}\vert a^{4})(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert a^{3})(a^{0}\vert a^{1}\vert a^{4})+(a^{2}\vert a^{4})(a^{0}\vert a^{1}\vert a^{3})+(a^{3}\vert a^{4})(a^{0}\vert a^{1}\vert a^{2})\).

\(F_{0}^{(3)} = 8 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(F_{1}^{(3)} = -4 {\ast}h{\ast}d{\ast} ((14 {\ast}h + 4) {\ast}c^{2} + (-308 {\ast}h^{2} - 93 {\ast}h- 1) {\ast}c + 170 {\ast}h^{2} + 34 {\ast}h)\), \(F_{2}^{(3)} = h{\ast}d{\ast} (4 {\ast}c^{3} + (-222 {\ast}h- 1) {\ast}c^{2} + (3008 {\ast}h^{2} + 102 {\ast}h) {\ast}c- 1496 {\ast}h^{2})\), \(F_{0}^{(4)} = 16{\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(F_{1}^{(4)} = -8{\ast}h{\ast}d{\ast}((210{\ast}h^{2}+162{\ast}h+36){\ast}c^{3}+(-4620{\ast}h^{3}-3227{\ast}h^{2}-861{\ast}h+26){\ast}c^{2}+(-5614{\ast}h^{3}+2915{\ast}h^{2}-485{\ast}h-2){\ast}c-1334{\ast}h^{3}+2622{\ast}h^{2}+92{\ast}h)\), F 2 (4) = 2∗hd∗(60∗hc 4+(−3330∗h 2−523∗h−487)∗c 3+(45120∗h 3+9648∗h 2+13856∗h−2336)∗c 2+(36376∗h 3−91186∗h 2+43550∗h−2232)∗c−6760∗h 3−47796∗h 2+19756∗h−696), \(F_{3}^{(4)} = 4{\ast}h{\ast}d{\ast}((42{\ast}h+36){\ast}c^{4}+(-1848{\ast}h^{2}-1279{\ast}h+513){\ast}c^{3}+(20328{\ast}h^{3}+13052{\ast}h^{2}-14654{\ast}h+2334){\ast}c^{2}+(-35836{\ast}h^{3}+98516{\ast}h^{2}-43320{\ast}h+2232){\ast}c-16700{\ast}h^{3}+43104{\ast}h^{2}-19756{\ast}h+696)\), F 4 (4) = (1∕2)∗hd∗((1128∗h+199)∗c 4+(−46392∗h 2−3311∗h−1768)∗c 3+(497472∗h 3−19488∗h 2+73544∗h−16440)∗c 2+(351008∗h 3−726256∗h 2+326804∗h−17160)∗c−72848∗h 3−344832∗h 2+158048∗h−5568), \(F_{5}^{(4)} = (-1/2){\ast}h{\ast}d{\ast}(60{\ast}c^{5}+(-2976{\ast}h+1023){\ast}c^{4}+(44184{\ast}h^{2}-41669{\ast}h+2850){\ast}c^{3}+(-164544{\ast}h^{3}+426432{\ast}h^{2}-65116{\ast}h-716){\ast}c^{2}+(-22112{\ast}h^{3}+23984{\ast}h^{2}+13092{\ast}h-1528){\ast}c+68816{\ast}h^{3}-150144{\ast}h^{2}+25024{\ast}h)\), \(F_{6}^{(4)} = (1/2){\ast}h{\ast}d{\ast}(60{\ast}c^{5}+(-2640{\ast}h+1311){\ast}c^{4}+(29400{\ast}h^{2}-51901{\ast}h+6954){\ast}c^{3}+(-1920{\ast}h^{3}+530848{\ast}h^{2}-182348{\ast}h+17956){\ast}c^{2}+(-308800{\ast}h^{3}+812112{\ast}h^{2}-333468{\ast}h+16328){\ast}c-64784{\ast}h^{3}+194688{\ast}h^{2}-133024{\ast}h+5568)\), \(F_{0}^{(5)} = 32{\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\), \(F_{1}^{(5)} = -16{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+3366{\ast}h^{2}+1848{\ast}h+360){\ast}c^{3}+(-50820{\ast}h^{4}-64063{\ast}h^{3}-39624{\ast}h^{2}-9203{\ast}h+402){\ast}c^{2}+(-190058{\ast}h^{4}+21757{\ast}h^{3}+50420{\ast}h^{2}-8593{\ast}h-6){\ast}c+14558{\ast}h^{4}-53244{\ast}h^{3}+48082{\ast}h^{2}+348{\ast}h)\), \(F_{2}^{(5)} = (4/5){\ast}h{\ast}d{\ast}((3300{\ast}h^{2}+660{\ast}h-40){\ast}c^{4}+(-183150{\ast}h^{3}-90835{\ast}h^{2}-94567{\ast}h-25578){\ast}c^{3}+(2481600{\ast}h^{4}+1334700{\ast}h^{3}+2540131{\ast}h^{2}+285789{\ast}h-163830){\ast}c^{2}+(7115560{\ast}h^{4}-13778670{\ast}h^{3}+2299334{\ast}h^{2}+2630452{\ast}h-245456){\ast}c+858872{\ast}h^{4}+1045920{\ast}h^{3}-6623912{\ast}h^{2}+2211696{\ast}h-37056)\), \(F_{3}^{(5)} = (8/5){\ast}h{\ast}d{\ast}((2310{\ast}h^{2}+3300{\ast}h+920){\ast}c^{4}+(-101640{\ast}h^{3}-123925{\ast}h^{2}+2681{\ast}h+13794){\ast}c^{3}+(1118040{\ast}h^{4}+1178540{\ast}h^{3}-631298{\ast}h^{2}-179402{\ast}h+81900){\ast}c^{2}+(-228580{\ast}h^{4}+4993420{\ast}h^{3}-750692{\ast}h^{2}-1313196{\ast}h+122728){\ast}c+344284{\ast}h^{4}-2043720{\ast}h^{3}+3258596{\ast}h^{2}-1105848{\ast}h+18528)\), \(F_{4}^{(5)} = (1/5){\ast}h{\ast}d{\ast}(500{\ast}c^{5}+(62040{\ast}h^{2}+7735{\ast}h+25115){\ast}c^{4}+(-2551560{\ast}h^{3}-564175{\ast}h^{2}-1452063{\ast}h+94428){\ast}c^{3}+(27360960{\ast}h^{4}+2744160{\ast}h^{3}+30534534{\ast}h^{2}-6099454{\ast}h-348380){\ast}c^{2}+(64210400{\ast}h^{4}-208744320{\ast}h^{3}+91532216{\ast}h^{2}+3799848{\ast}h-935504){\ast}c-909872{\ast}h^{4}-64093920{\ast}h^{3}+8306672{\ast}h^{2}+7635744{\ast}h-148224)\), \(F_{5}^{(5)} = (-1/5){\ast}h{\ast}d{\ast}((3300{\ast}h+1500){\ast}c^{5}+(-163680{\ast}h^{2}-585{\ast}h+39235){\ast}c^{4}+(2430120{\ast}h^{3}-2017145{\ast}h^{2}-1433609{\ast}h+240084){\ast}c^{3}+(-9049920{\ast}h^{4}+31066560{\ast}h^{3}+13487402{\ast}h^{2}-7601082{\ast}h+456180){\ast}c^{2}+(-41190560{\ast}h^{4}-16962080{\ast}h^{3}+49902728{\ast}h^{2}-9779816{\ast}h-107152){\ast}c-808336{\ast}h^{4}+9987680{\ast}h^{3}-17678384{\ast}h^{2}+1778272{\ast}h+188928)\), \(F_{6}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((3300{\ast}h+1500){\ast}c^{5}+(-145200{\ast}h^{2}+25815{\ast}h+46595){\ast}c^{4}+(1617000{\ast}h^{3}-3008545{\ast}h^{2}-1412161{\ast}h+350436){\ast}c^{3}+(-105600{\ast}h^{4}+40494880{\ast}h^{3}+8437018{\ast}h^{2}-9036298{\ast}h+1111380){\ast}c^{2}+(-43019200{\ast}h^{4}+22985280{\ast}h^{3}+43897192{\ast}h^{2}-20285384{\ast}h+874672){\ast}c+1945936{\ast}h^{4}-6362080{\ast}h^{3}+8390384{\ast}h^{2}-7068512{\ast}h+337152)\), \(F_{7}^{(5)} = (-2/5){\ast}h{\ast}d{\ast}((660{\ast}h+460){\ast}c^{5}+(-51150{\ast}h^{2}-33647{\ast}h+6897){\ast}c^{4}+(1302180{\ast}h^{3}+829156{\ast}h^{2}-451426{\ast}h+40950){\ast}c^{3}+(-10919040{\ast}h^{4}-7782640{\ast}h^{3}+9315274{\ast}h^{2}-2071698{\ast}h+61364){\ast}c^{2}+(21416272{\ast}h^{4}-59346500{\ast}h^{3}+27298188{\ast}h^{2}-1866624{\ast}h+9264){\ast}c+9686000{\ast}h^{4}-25000320{\ast}h^{3}+11458480{\ast}h^{2}-403680{\ast}h)\), \(F_{8}^{(5)} = (-1/2){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(-8078{\ast}h+2861){\ast}c^{5}+(221174{\ast}h^{2}-203081{\ast}h+19684){\ast}c^{4}+(-2214880{\ast}h^{3}+4802538{\ast}h^{2}-965274{\ast}h+52252){\ast}c^{3}+(4236288{\ast}h^{4}-38346896{\ast}h^{3}+13282628{\ast}h^{2}-1695920{\ast}h+25584){\ast}c^{2}+(12825792{\ast}h^{4}-32289856{\ast}h^{3}+12276272{\ast}h^{2}-758816{\ast}h+17536){\ast}c-155904{\ast}h^{4}-1722368{\ast}h^{3}+4176000{\ast}h^{2}-215296{\ast}h)\), \(F_{01423}^{(5)} = (-1/10){\ast}h{\ast}d{\ast}(500{\ast}c^{6}+(-33130{\ast}h+25625){\ast}c^{5}+(707230{\ast}h^{2}-1434751{\ast}h+485426){\ast}c^{4}+(-4128560{\ast}h^{3}+27827338{\ast}h^{2}-20020070{\ast}h+4414912){\ast}c^{3}+(-15989760{\ast}h^{4}-192127280{\ast}h^{3}+258582588{\ast}h^{2}-134080200{\ast}h+15339472){\ast}c^{2}+(136946816{\ast}h^{4}-932999600{\ast}h^{3}+1000619648{\ast}h^{2}-291521120{\ast}h+11640256){\ast}c+25836352{\ast}h^{4}-152808960{\ast}h^{3}+252283328{\ast}h^{2}-102259584{\ast}h+4475904)\), \(F_{01324}^{(5)} = (1/10){\ast}h{\ast}d{\ast}(500{\ast}c^{6}+(-35770{\ast}h+23785){\ast}c^{5}+(911830{\ast}h^{2}-1300163{\ast}h+457838){\ast}c^{4}+(-9337280{\ast}h^{3}+24510714{\ast}h^{2}-18214366{\ast}h+4251112){\ast}c^{3}+(27686400{\ast}h^{4}-160996720{\ast}h^{3}+221321492{\ast}h^{2}-125793408{\ast}h+15094016){\ast}c^{2}+(51281728{\ast}h^{4}-695613600{\ast}h^{3}+891426896{\ast}h^{2}-284054624{\ast}h+11603200){\ast}c-12907648{\ast}h^{4}-52807680{\ast}h^{3}+206449408{\ast}h^{2}-100644864{\ast}h+4475904)\), \(F_{12034}^{(5)} = (1/10){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(-3150{\ast}h+5575){\ast}c^{5}+(15650{\ast}h^{2}-148721{\ast}h+119806){\ast}c^{4}+(-550800{\ast}h^{3}-1490922{\ast}h^{2}-4041146{\ast}h+949728){\ast}c^{3}+(14745600{\ast}h^{4}+53833840{\ast}h^{3}+29411876{\ast}h^{2}-25511768{\ast}h+3284592){\ast}c^{2}+(-167754624{\ast}h^{4}+73524400{\ast}h^{3}+137639360{\ast}h^{2}-61086944{\ast}h+2624448){\ast}c+3115968{\ast}h^{4}-16839680{\ast}h^{3}+31808832{\ast}h^{2}-21690496{\ast}h+1007616)\), \(F_{01234}^{(5)} = h{\ast}d{\ast}(50{\ast}c^{6}+(-5304{\ast}h+1238){\ast}c^{5}+(204604{\ast}h^{2}-99615{\ast}h+13827){\ast}c^{4}+(-3383208{\ast}h^{3}+2721160{\ast}h^{2}-892294{\ast}h+59250){\ast}c^{3}+(20120832{\ast}h^{4}-26868960{\ast}h^{3}+17636364{\ast}h^{2}-3522876{\ast}h-65568){\ast}c^{2}+(41237472{\ast}h^{4}-107859720{\ast}h^{3}+46229896{\ast}h^{2}-423632{\ast}h-256192){\ast}c-772320{\ast}h^{4}-27659904{\ast}h^{3}+9574560{\ast}h^{2}+1892928{\ast}h-31488)\), \(F_{02134}^{(5)} = (-1/10){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(150{\ast}h+7215){\ast}c^{5}+(-237790{\ast}h^{2}-280007{\ast}h+130072){\ast}c^{4}+(5835360{\ast}h^{3}+1550206{\ast}h^{2}-5491014{\ast}h+812348){\ast}c^{3}+(-38223360{\ast}h^{4}+30779440{\ast}h^{3}+63018188{\ast}h^{2}-27827312{\ast}h+1723824){\ast}c^{2}+(-139274688{\ast}h^{4}-126848480{\ast}h^{3}+208934224{\ast}h^{2}-38241856{\ast}h-180160){\ast}c+69888{\ast}h^{4}+19482880{\ast}h^{3}-41267328{\ast}h^{2}+3697664{\ast}h+692736)\), \(F_{03214}^{(5)} = F_{04213}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((1650{\ast}h+820){\ast}c^{5}+(-126720{\ast}h^{2}-65643{\ast}h+5133){\ast}c^{4}+(3193080{\ast}h^{3}+1520564{\ast}h^{2}-724934{\ast}h-68690){\ast}c^{3}+(-26484480{\ast}h^{4}-11527200{\ast}h^{3}+16803156{\ast}h^{2}-1157772{\ast}h-780384){\ast}c^{2}+(14239968{\ast}h^{4}-100186440{\ast}h^{3}+35647432{\ast}h^{2}+11422544{\ast}h-1402304){\ast}c-1523040{\ast}h^{4}+18161280{\ast}h^{3}-36538080{\ast}h^{2}+12694080{\ast}h-157440)\), \(F_{02413}^{(5)} = F_{03412}^{(5)} = (-1/5){\ast}h{\ast}d{\ast}((3630{\ast}h+5660){\ast}c^{5}+(-199320{\ast}h^{2}-209673{\ast}h+193503){\ast}c^{4}+(3472920{\ast}h^{3}+1907324{\ast}h^{2}-7596850{\ast}h+2076826){\ast}c^{3}+(-18585600{\ast}h^{4}-196400{\ast}h^{3}+96084724{\ast}h^{2}-62800300{\ast}h+7605776){\ast}c^{2}+(36408928{\ast}h^{4}-385775160{\ast}h^{3}+469619144{\ast}h^{2}-143863520{\ast}h+5776288){\ast}c+13307936{\ast}h^{4}-72098560{\ast}h^{3}+115701664{\ast}h^{2}-50591552{\ast}h+2237952)\), \(F_{02314}^{(5)} = F_{04312}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((2310{\ast}h+4740){\ast}c^{5}+(-97020{\ast}h^{2}-142379{\ast}h+179709){\ast}c^{4}+(868560{\ast}h^{3}+249012{\ast}h^{2}-6693998{\ast}h+1994926){\ast}c^{3}+(3252480{\ast}h^{4}+15368880{\ast}h^{3}+77454176{\ast}h^{2}-58656904{\ast}h+7483048){\ast}c^{2}+(-6423616{\ast}h^{4}-267082160{\ast}h^{3}+415022768{\ast}h^{2}-140130272{\ast}h+5757760){\ast}c-6064064{\ast}h^{4}-22097920{\ast}h^{3}+92784704{\ast}h^{2}-49784192{\ast}h+2237952)\), \(F_{04123}^{(5)} = F_{03124}^{(5)} = (-2/5){\ast}h{\ast}d{\ast}(150{\ast}c^{6}+(-10060{\ast}h+5380){\ast}c^{5}+(217020{\ast}h^{2}-323853{\ast}h+57123){\ast}c^{4}+(-1309760{\ast}h^{3}+6390724{\ast}h^{2}-2579346{\ast}h+268402){\ast}c^{3}+(-4260480{\ast}h^{4}-40238760{\ast}h^{3}+32357832{\ast}h^{2}-9076728{\ast}h+462936){\ast}c^{2}+(-18786432{\ast}h^{4}-72074440{\ast}h^{3}+67578896{\ast}h^{2}-10508984{\ast}h-23120){\ast}c-177408{\ast}h^{4}+2717760{\ast}h^{3}-5096832{\ast}h^{2}+655296{\ast}h+173184)\), \(F_{14023}^{(5)} = F_{13024}^{(5)} = (1/5){\ast}h{\ast}d{\ast}(300{\ast}c^{6}+(-21770{\ast}h+9940){\ast}c^{5}+(560760{\ast}h^{2}-582063{\ast}h+109113){\ast}c^{4}+(-5812600{\ast}h^{3}+11260884{\ast}h^{2}-4433758{\ast}h+605494){\ast}c^{3}+(17963520{\ast}h^{4}-68950320{\ast}h^{3}+47912508{\ast}h^{2}-16995684{\ast}h+1706256){\ast}c^{2}+(-51812832{\ast}h^{4}-43962440{\ast}h^{3}+99510360{\ast}h^{2}-32440512{\ast}h+1356064){\ast}c+1168224{\ast}h^{4}-12725760{\ast}h^{3}+26344416{\ast}h^{2}-11383488{\ast}h+503808)\), \(E_{3}^{(3)} = 8 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(E_{2}^{(3)} = -12{\ast}h{\ast}d{\ast}((14{\ast}h+4){\ast}c^{2} +(-308{\ast}h^{2} -93{\ast}h-1){\ast}c+170{\ast}h^{2} +34{\ast}h)\), \(E_{1}^{(3)} = 2 {\ast}h{\ast}d{\ast} (4 {\ast}c^{3} + (-222 {\ast}h- 1) {\ast}c^{2} + (3008 {\ast}h^{2} + 102 {\ast}h) {\ast}c- 1496 {\ast}h^{2})\), \(E_{4}^{(4)} = 16{\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), E 3 (4) = −48∗hd∗((210∗h 2+162∗h+36)∗c 3+(−4620∗h 3−3227∗h 2−861∗h+26)∗c 2+(−5614∗h 3+2915∗h 2−485∗h−2)∗c−1334∗h 3+2622∗h 2+92∗h), \(E_{2}^{(4)} = 4{\ast}h{\ast}d{\ast}((366{\ast}h+108){\ast}c^{4}+(-18864{\ast}h^{2}-5929{\ast}h-409){\ast}c^{3}+(241464{\ast}h^{3}+77748{\ast}h^{2}+11462{\ast}h-2342){\ast}c^{2}+(37996{\ast}h^{3}-69196{\ast}h^{2}+44240{\ast}h-2232){\ast}c-77140{\ast}h^{3}-61872{\ast}h^{2}+19756{\ast}h-696)\), \(E_{1}^{(4)} = 2{\ast}h{\ast}d{\ast}((1464{\ast}h+487){\ast}c^{4}+(-61176{\ast}h^{2}-13543{\ast}h+2336){\ast}c^{3}+(660096{\ast}h^{3}+84928{\ast}h^{2}-43688{\ast}h+2232){\ast}c^{2}+(64320{\ast}h^{3}+61872{\ast}h^{2}-19756{\ast}h+696){\ast}c-206448{\ast}h^{3})\), \(E_{5}^{(5)} = 32{\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\), \(E_{4}^{(5)} = -160{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+3366{\ast}h^{2}+1848{\ast}h+360){\ast}c^{3}+(-50820{\ast}h^{4}-64063{\ast}h^{3}-39624{\ast}h^{2}-9203{\ast}h+402){\ast}c^{2}+(-190058{\ast}h^{4}+21757{\ast}h^{3}+50420{\ast}h^{2}-8593{\ast}h-6){\ast}c+14558{\ast}h^{4}-53244{\ast}h^{3}+48082{\ast}h^{2}+348{\ast}h)\), \(E_{3}^{(5)} = 8{\ast}h{\ast}d{\ast}((13530{\ast}h^{2}+11220{\ast}h+2680){\ast}c^{4}+(-671220{\ast}h^{3}-553445{\ast}h^{2}-181091{\ast}h-9774){\ast}c^{3}+(8317320{\ast}h^{4}+6205020{\ast}h^{3}+3186368{\ast}h^{2}+33372{\ast}h-81960){\ast}c^{2}+(13545380{\ast}h^{4}-12577080{\ast}h^{3}+2346592{\ast}h^{2}+1321316{\ast}h-122728){\ast}c+2750596{\ast}h^{4}-4039320{\ast}h^{3}-3472036{\ast}h^{2}+1105848{\ast}h-18528)\), E 2 (5) = −4∗hd∗((1320∗h+420)∗c 5+(−182820∗h 2−101429∗h−18681)∗c 4+(5969040∗h 3+3213887∗h 2+527763∗h−122880)∗c 3+(−58143360∗h 4−27737760∗h 3−6853602∗h 2+3391274∗h−184092)∗c 2+(−19549216∗h 4+50103960∗h 3−30930304∗h 2+2972472∗h−27792)∗c+17527600∗h 4+30443040∗h 3−11458480∗h 2+403680∗h), \(E_{1}^{(5)} = -2{\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(1470{\ast}h+6495){\ast}c^{5}+(-501790{\ast}h^{2}-424803{\ast}h+40956){\ast}c^{4}+(15693120{\ast}h^{3}+8719374{\ast}h^{2}-2073438{\ast}h+61364){\ast}c^{3}+(-141373440{\ast}h^{4}-54143280{\ast}h^{3}+27458268{\ast}h^{2}-1866624{\ast}h+9264){\ast}c^{2}+(-12282432{\ast}h^{4}-30443040{\ast}h^{3}+11458480{\ast}h^{2}-403680{\ast}h){\ast}c+47895936{\ast}h^{4})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamauchi, H. (2014). Extended Griess Algebras and Matsuo-Norton Trace Formulae. In: Kohnen, W., Weissauer, R. (eds) Conformal Field Theory, Automorphic Forms and Related Topics. Contributions in Mathematical and Computational Sciences, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43831-2_4

Download citation

Publish with us

Policies and ethics