Abstract
We introduce the \(\mathbb{Z}_{2}\)-extended Griess algebra of a vertex operator superalgebra with an involution and derive the Matsuo-Norton trace formulae for the extended Griess algebra based on conformal design structure. We illustrate an application of our formulae by reformulating the one-to-one correspondence between 2A-elements of the Baby-monster simple group and N = 1 c = 7∕10 Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)
Dong, C., Nagatomo, K.: Classification of irreducible modules for the vertex operator algebra M(1)+. J. Algebra 216, 384–404 (1999)
Dong, C. Li, H., Mason, G.: Some twisted sectors for the Moonshine module. In: Moonshine, the Monster, and Related Topics, South Hadley, 1994. Contemporary Mathematics, vol. 193, pp. 25–43. American Mathematical Society, Providence (1996)
Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representation of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)
Frenkel, I.B., Lepowsky, J. Meurman, A.: Vertex Operator Algebras and the Monster. Academic, New York (1988)
Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On Axiomatic Approaches to Vertex Operator Algebras and Modules. Memoirs of the American Mathematical Society, vol. 104. American Mathematical Society, Providence (1993)
Griess, R.L.: The vertex operator algebra related to E 8 with automorphism group O+(10, 2), The Monster and Lie algebras, Ohio State Univ. Math. Res. Inst. Publ. 7, 43–58 (1998)
Höhn, G.: Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Ph.D. thesis, Bonn (1995), Bonner Mathematische Schriften, 286, 1–85 (1996). arXiv:0706.0236
Höhn, G.: The group of symmetries of the shorter moonshine module. Abh. Math. Semin. Univ. Hambg. 80(2), 275–283 (2010). arXiv:math/0210076
Höhn, G.: Generalized moonshine for the Baby Monster. Preprint, May 2003. http://www.math.ksu.edu/ gerald/papers/baby8.ps
Höhn, G.: Conformal designs based on vertex operator algebras. Adv. Math. 217, 2301–2335 (2008)
Höhn, G., Lam, C.H., Yamauchi, H.: McKay’s E 7 observation on the Babymonster. Int. Math. Res. Not. 2012, 166–212 (2012). doi:10.1093/imrn/rnr009
Kac, V.G.: Vertex Algebras for Beginners. University Lecture Series, vol. 10. American Mathematical Society, Providence (1997)
Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie algebras. World Scientific, Singapore (1987)
Lam, C.H.: Code vertex operator algebras under coordinate change. Commun. Algebra 27, 4587–4605 (1999)
Lam, C.H., Lam, N., Yamauchi, H.: Extension of unitary Virasoro vertex operator algebra by a simple module. Int. Math. Res. Not. 11, 577–611 (2003)
Lam, C.H., Sakuma, S., Yamauchi, H.: Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z. 255(3), 597–626 (2007)
Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96, 279–297 (1994)
Li, H.: Regular representation, Zhu’s A(V )-theory, and induced modules. J. Algebra 238, 159–193 (2001)
Li, H., Xu, X.: A characterization of vertex algebra associated to even lattices. J. Algebra 173, 253–270 (1995)
Matsuo, A., Matsuo, M.: The automorphism group of the Hamming code vertex operator algebra. J. Algebra 228, 204–226 (2000)
Matsuo, A.: Norton’s trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry. Commun. Math. Phys. 224, 565–591 (2001)
Miyamoto, M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 528–548 (1996)
Primc, M.: Vertex algebras generalized by Lie algebras. J. Pure Appl. Algebra 135, 253–293 (1999)
Scheithauer, N.: Vertex algebras Lie algebras, and superstrings. J. Algebra 200, 363–403 (1998)
Shimakura, H.: The automorphism group of the vertex operator algebra \(V _{L}^{+}\) for an even lattice without roots. J. Algebra 280, 29–57 (2004)
Shimakura, H.: Classification of Ising vectors in the vertex operator algebra \(V _{L}^{+}\). Pac. J. Math. 258, 487–495 (2012)
Wang, W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 71, 197–211 (1993)
Yamauchi, H.: 2A-orbifold construction and the baby-monster vertex operator superalgebra. J. Algebra 284, 645–668 (2005)
Zamolodchikov, A.B.: Infinite additional symmetries in two dimensional conformal quantum field theory. Theor. Math. Phys. 65, 1205 (1985)
Zhu, Y.: Modular invariance of characters of vertex operator algebras, J. Am. Math. Soc. 9, 237–302 (1996)
Acknowledgements
The author wishes to thank Professor Atsushi Matsuo for stimulating discussions and for his Mathematica programs. He also thanks Professor Masahiko Miyamoto for valuable comments. Most of the results of this paper were obtained by using computer. The author used a computer algebra system Risa/Asir for Windows. This work was supported by JSPS Grant-in-Aid for Young Scientists (Start-up) No. 19840025 and (B) No. 21740011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
1.1 Coefficients in Generalized Casimir Vectors
\(A_{[2]}^{(2)} = 2 {\ast} h {\ast} d\), \(A_{[3]}^{(3)} = h {\ast} d\), \(A_{[4]}^{(4)} = 3 {\ast} h {\ast} d {\ast} (c - 2 {\ast} h + 4)\), \(A_{[2,2]}^{(4)} = 2 {\ast} h {\ast} (5 {\ast} h + 1) {\ast} d\), \(A_{[5]}^{(5)} = 2 {\ast} h {\ast} d {\ast} (c - 2 {\ast} h + 4)\), \(A_{[3,2]}^{(5)} = 2 {\ast} h {\ast} (5 {\ast} h + 1) {\ast} d\), \(A_{[6]}^{(6)} = 4{\ast}h{\ast}d{\ast}(5{\ast}c^{3}+(-15{\ast}h+65){\ast}c^{2}+(-20{\ast}h^{2}-148{\ast}h+148){\ast}c-26{\ast}h^{2}+98{\ast}h-92)\), \(A_{[4,2]}^{(6)} = 2{\ast}h{\ast}d{\ast}((42{\ast}h+8){\ast}c^{2} +(-84{\ast}h^{2} +349{\ast}h+65){\ast}c-134{\ast}h^{2} -86{\ast}h-40)\), \(A_{[3,3]}^{(6)} = (1/2){\ast}h{\ast}d{\ast}((70{\ast}h+15){\ast}c^{2} +(614{\ast}h+136){\ast}c+248{\ast}h^{2} -464{\ast}h-64)\), \(A_{[2,2,2]}^{(6)} = (4/3) {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(A_{[7]}^{(7)} = 3{\ast}h{\ast}d{\ast}(5{\ast}c^{3}+(-15{\ast}h+65){\ast}c^{2}+(-20{\ast}h^{2}-148{\ast}h+148){\ast}c-26{\ast}h^{2}+98{\ast}h-92)\), \(A_{[5,2]}^{(7)} = 2{\ast}h{\ast}d{\ast}((28{\ast}h+5){\ast}c^{2} +(-56{\ast}h^{2} +243{\ast}h+41){\ast}c-172{\ast}h^{2} -16{\ast}h-28)\), \(A_{[4,3]}^{(7)} = 3{\ast}h{\ast}d{\ast}((14{\ast}h+3){\ast}c^{2} +(-28{\ast}h^{2} +106{\ast}h+24){\ast}c+38{\ast}h^{2} -70{\ast}h-12)\), \(A_{[3,2,2]}^{(7)} = 2 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(A_{[8]}^{(8)} = (1/2){\ast}h{\ast}d{\ast}(350{\ast}c^{5}+(-1260{\ast}h+10080){\ast}c^{4}+(-560{\ast}h^{2}-31735{\ast}h+85005){\ast}c^{3}+(-5040{\ast}h^{3}-17240{\ast}h^{2}-192290{\ast}h+194494){\ast}c^{2}+(-18520{\ast}h^{3}-43840{\ast}h^{2}+20928{\ast}h-8184){\ast}c+4344{\ast}h^{3}-32496{\ast}h^{2}+76488{\ast}h-57744)\), A [6, 2] (8) = 2∗h∗d∗((300∗h+50)∗c 4+(−900∗h 2+7312∗h+1176)∗c 3+(−1200∗h 3−18548∗h 2+42969∗h+6081)∗c 2+(−4552∗h 3−52960∗h 2+32406∗h−1466)∗c−536∗h 3−26880∗h 2+5696∗h−2808), \(A_{[5,3]}^{(8)} = (1/2){\ast}h{\ast}d{\ast}((840{\ast}h+175){\ast}c^{4}+(-1680{\ast}h^{2}+19885{\ast}h+4188){\ast}c^{3}+(-25392{\ast}h^{2}+107936{\ast}h+23184){\ast}c^{2}+(-2016{\ast}h^{3}+1832{\ast}h^{2}+4060{\ast}h+968){\ast}c+7792{\ast}h^{3}+1776{\ast}h^{2}-31312{\ast}h-6816)\), \(A_{[4,4]}^{(8)} = (3/2){\ast}h{\ast}d{\ast}((126{\ast}h+28){\ast}c^{4}+(-504{\ast}h^{2}+2787{\ast}h+643){\ast}c^{3}+(504{\ast}h^{3}-7156{\ast}h^{2}+13198{\ast}h+3338){\ast}c^{2}+(3180{\ast}h^{3}+2372{\ast}h^{2}-2480{\ast}h+344){\ast}c-2004{\ast}h^{3}+7248{\ast}h^{2}-6036{\ast}h-888)\), \(A_{[4,2,2]}^{(8)} = 2{\ast}h{\ast}d{\ast}((630{\ast}h^{2}+366{\ast}h+68){\ast}c^{3}+(-1260{\ast}h^{3}+9159{\ast}h^{2}+4793{\ast}h+958){\ast}c^{2}+(-6942{\ast}h^{3}+11417{\ast}h^{2}-3187{\ast}h+210){\ast}c+1114{\ast}h^{3}-654{\ast}h^{2}-3064{\ast}h-168)\), \(A_{[3,3,2]}^{(8)} = h{\ast}d{\ast}((1050{\ast}h^{2}+645{\ast}h+125){\ast}c^{3}+(16700{\ast}h^{2}+9170{\ast}h+1934){\ast}c^{2}+(3720{\ast}h^{3}+15510{\ast}h^{2}-8662{\ast}h+716){\ast}c-1016{\ast}h^{3}+6444{\ast}h^{2}-8692{\ast}h-264)\), \(A_{[2,2,2,2]}^{(8)} = (2/3){\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(A_{[9]}^{(9)} = (2/3){\ast}h{\ast}d{\ast}(210{\ast}c^{5}+(-756{\ast}h+6048){\ast}c^{4}+(-756{\ast}h^{2}-19311{\ast}h+50949){\ast}c^{3}+(-5544{\ast}h^{3}-19676{\ast}h^{2}-120486{\ast}h+115622){\ast}c^{2}+(-23508{\ast}h^{3}-30448{\ast}h^{2}+18372{\ast}h-5456){\ast}c+4428{\ast}h^{3}-26232{\ast}h^{2}+52020{\ast}h-34536)\), \(A_{[7,2]}^{(9)} = 2{\ast}h{\ast}d{\ast}((225{\ast}h+35){\ast}c^{4}+(-675{\ast}h^{2}+5565{\ast}h+826){\ast}c^{3}+(-900{\ast}h^{3}-14615{\ast}h^{2}+33776{\ast}h+4267){\ast}c^{2}+(-2910{\ast}h^{3}-49778{\ast}h^{2}+29666{\ast}h-1378){\ast}c-2350{\ast}h^{3}-23916{\ast}h^{2}+6718{\ast}h-2196)\), \(A_{[6,3]}^{(9)} = 4{\ast}h{\ast}d{\ast}((75{\ast}h+15){\ast}c^{4}+(-225{\ast}h^{2}+1747{\ast}h+350){\ast}c^{3}+(-300{\ast}h^{3}-3933{\ast}h^{2}+9193{\ast}h+1814){\ast}c^{2}+(-1642{\ast}h^{3}-3182{\ast}h^{2}+2740{\ast}h-88){\ast}c+1814{\ast}h^{3}-2964{\ast}h^{2}-1022{\ast}h-612)\), \(A_{[5,4]}^{(9)} = 2{\ast}h{\ast}d{\ast}((126{\ast}h+28){\ast}c^{4}+(-504{\ast}h^{2}+2787{\ast}h+643){\ast}c^{3}+(504{\ast}h^{3}-7156{\ast}h^{2}+13198{\ast}h+3338){\ast}c^{2}+(3180{\ast}h^{3}+2372{\ast}h^{2}-2480{\ast}h+344){\ast}c-2004{\ast}h^{3}+7248{\ast}h^{2}-6036{\ast}h-888)\), \(A_{[5,2,2]}^{(9)} = 4{\ast}h{\ast}d{\ast}((210{\ast}h^{2}+117{\ast}h+21){\ast}c^{3}+(-420{\ast}h^{3}+3208{\ast}h^{2}+1602{\ast}h+302){\ast}c^{2}+(-3554{\ast}h^{3}+4166{\ast}h^{2}-784{\ast}h+40){\ast}c+710{\ast}h^{3}-1032{\ast}h^{2}-746{\ast}h-60)\), \(A_{[4,3,2]}^{(9)} = 2{\ast}h{\ast}d{\ast}((630{\ast}h^{2}+381{\ast}h+73){\ast}c^{3}+(-1260{\ast}h^{3}+8694{\ast}h^{2}+4780{\ast}h+1010){\ast}c^{2}+(-3222{\ast}h^{3}+10336{\ast}h^{2}-4022{\ast}h+300){\ast}c+98{\ast}h^{3}+1788{\ast}h^{2}-3890{\ast}h-156)\), \(A_{[3,3,3]}^{(9)} = (1/6){\ast}h{\ast}d{\ast}((1050{\ast}h^{2}+675{\ast}h+135){\ast}c^{3}+(15770{\ast}h^{2}+9144{\ast}h+2038){\ast}c^{2}+(11160{\ast}h^{3}+13348{\ast}h^{2}-10332{\ast}h+896){\ast}c-3048{\ast}h^{3}+11328{\ast}h^{2}-10344{\ast}h-240)\), \(A_{[3,2,2,2]}^{(9)} = (4/3){\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(A_{[10]}^{(10)} = (6/5){\ast}h{\ast}d{\ast}(1050{\ast}c^{6}+(-4200{\ast}h+52290){\ast}c^{5}+(-3150{\ast}h^{2}-195019{\ast}h+888199){\ast}c^{4}+(-31500{\ast}h^{3}-160243{\ast}h^{2}-2900235{\ast}h+5888368){\ast}c^{3}+(-33600{\ast}h^{4}-876400{\ast}h^{3}-2224448{\ast}h^{2}-13733560{\ast}h+11872408){\ast}c^{2}+(-189616{\ast}h^{4}-3013900{\ast}h^{3}-3958988{\ast}h^{2}+2767600{\ast}h-800016){\ast}c-29792{\ast}h^{4}+816800{\ast}h^{3}-3744448{\ast}h^{2}+6247744{\ast}h-3575424)\), A [8, 2] (10) = (1∕5)∗h∗d∗((19250∗h+2800)∗c 5+(−69300∗h 2+881440∗h+124040)∗c 4+(−30800∗h 3−2898185∗h 2+12963179∗h+1696856)∗c 3+(−277200∗h 4−1275240∗h 3−35996682∗h 2+64729982∗h+6705400)∗c 2+(−2026600∗h 4−3142080∗h 3−112130808∗h 2+64543216∗h−3235248)∗c−335864∗h 4−8601520∗h 3−49036936∗h 2+17453488∗h−4052928), \(A_{[7,3]}^{(10)} = (3/10){\ast}h{\ast}d{\ast}((8250{\ast}h+1575){\ast}c^{5}+(-24750{\ast}h^{2}+368615{\ast}h+70030){\ast}c^{4}+(-33000{\ast}h^{3}-978660{\ast}h^{2}+5161264{\ast}h+966596){\ast}c^{3}+(-814640{\ast}h^{3}-10273412{\ast}h^{2}+22761712{\ast}h+3992640){\ast}c^{2}+(-103200{\ast}h^{4}-2524680{\ast}h^{3}-14390328{\ast}h^{2}+9889536{\ast}h-487008){\ast}c+139456{\ast}h^{4}+5842880{\ast}h^{3}-11650816{\ast}h^{2}-447872{\ast}h-1475328)\), \(A_{[6,4]}^{(10)} = (12/5){\ast}h{\ast}d{\ast}((825{\ast}h+180){\ast}c^{5}+(-4125{\ast}h^{2}+35248{\ast}h+7832){\ast}c^{4}+(1650{\ast}h^{3}-149899{\ast}h^{2}+456809{\ast}h+104870){\ast}c^{3}+(6600{\ast}h^{4}+60200{\ast}h^{3}-1328561{\ast}h^{2}+1698137{\ast}h+418354){\ast}c^{2}+(67132{\ast}h^{4}+339830{\ast}h^{3}-202982{\ast}h^{2}-47264{\ast}h+18184){\ast}c-33620{\ast}h^{4}-77560{\ast}h^{3}+609380{\ast}h^{2}-579320{\ast}h-120480)\), \(A_{[6,2,2]}^{(10)} = (4/5){\ast}h{\ast}d{\ast}((8250{\ast}h^{2}+4400{\ast}h+760){\ast}c^{4}+(-24750{\ast}h^{3}+296210{\ast}h^{2}+151096{\ast}h+26364){\ast}c^{3}+(-33000{\ast}h^{4}-801290{\ast}h^{3}+2704347{\ast}h^{2}+1191343{\ast}h+213790){\ast}c^{2}+(-232460{\ast}h^{4}-4589320{\ast}h^{3}+3842818{\ast}h^{2}-286646{\ast}h-11132){\ast}c+28644{\ast}h^{4}+857640{\ast}h^{3}-1710804{\ast}h^{2}-212088{\ast}h-52032)\), \(A_{[5,5]}^{(10)} = (1/5){\ast}h{\ast}d{\ast}((4620{\ast}h+1050){\ast}c^{5}+(-18480{\ast}h^{2}+198719{\ast}h+46201){\ast}c^{4}+(18480{\ast}h^{3}-639607{\ast}h^{2}+2606009{\ast}h+632228){\ast}c^{3}+(443400{\ast}h^{3}-5076574{\ast}h^{2}+9773262{\ast}h+2648692){\ast}c^{2}+(41376{\ast}h^{4}+1074560{\ast}h^{3}+4481200{\ast}h^{2}-3129584{\ast}h+288608){\ast}c+293648{\ast}h^{4}-2776160{\ast}h^{3}+7129072{\ast}h^{2}-5166496{\ast}h-672384)\), \(A_{[5,3,2]}^{(10)} = (1/5){\ast}h{\ast}d{\ast}((46200{\ast}h^{2}+27115{\ast}h+5075){\ast}c^{4}+(-92400{\ast}h^{3}+1636765{\ast}h^{2}+922753{\ast}h+178072){\ast}c^{3}+(-2371200{\ast}h^{3}+14798146{\ast}h^{2}+7158654{\ast}h+1515620){\ast}c^{2}+(-110880{\ast}h^{4}-9063800{\ast}h^{3}+17179184{\ast}h^{2}-5440168{\ast}h+338704){\ast}c-319088{\ast}h^{4}+2238560{\ast}h^{3}-652432{\ast}h^{2}-4969184{\ast}h-254976)\), \(A_{[4,4,2]}^{(10)} = (3/5){\ast}h{\ast}d{\ast}((6930{\ast}h^{2}+4180{\ast}h+800){\ast}c^{4}+(-27720{\ast}h^{3}+226185{\ast}h^{2}+133283{\ast}h+26662){\ast}c^{3}+(27720{\ast}h^{4}-631060{\ast}h^{3}+1836386{\ast}h^{2}+928514{\ast}h+211140){\ast}c^{2}+(337140{\ast}h^{4}-1677780{\ast}h^{3}+2472564{\ast}h^{2}-812508{\ast}h+53544){\ast}c+100532{\ast}h^{4}-226520{\ast}h^{3}+432268{\ast}h^{2}-745384{\ast}h-34656)\), \(A_{[4,3,3]}^{(10)} = (3/10){\ast}h{\ast}d{\ast}((11550{\ast}h^{2}+7425{\ast}h+1485){\ast}c^{4}+(-23100{\ast}h^{3}+389020{\ast}h^{2}+243566{\ast}h+51294){\ast}c^{3}+(-426920{\ast}h^{3}+3236462{\ast}h^{2}+1740898{\ast}h+429980){\ast}c^{2}+(-81840{\ast}h^{4}+1025620{\ast}h^{3}+3455108{\ast}h^{2}-2154976{\ast}h+167248){\ast}c-17296{\ast}h^{4}-522560{\ast}h^{3}+2125936{\ast}h^{2}-1996768{\ast}h-52992)\), \(A_{[4,2,2,2]}^{(10)} = 4{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+2706{\ast}h^{2}+1276{\ast}h+224){\ast}c^{3}+(-4620{\ast}h^{4}+48797{\ast}h^{3}+50252{\ast}h^{2}+22925{\ast}h+4434){\ast}c^{2}+(-47038{\ast}h^{4}+140169{\ast}h^{3}-6264{\ast}h^{2}-27525{\ast}h+2578){\ast}c-4966{\ast}h^{4}+9340{\ast}h^{3}+15382{\ast}h^{2}-28252{\ast}h-288)\), \(A_{[3,3,2,2]}^{(10)} = h{\ast}d{\ast}((11550{\ast}h^{3}+14025{\ast}h^{2}+6809{\ast}h+1222){\ast}c^{3}+(274840{\ast}h^{3}+284503{\ast}h^{2}+133429{\ast}h+26346){\ast}c^{2}+(40920{\ast}h^{4}+764986{\ast}h^{3}-116882{\ast}h^{2}-177916{\ast}h+18992){\ast}c+8648{\ast}h^{4}-92288{\ast}h^{3}+251080{\ast}h^{2}-201520{\ast}h-1344)\), \(A_{[2,2,2,2,2]}^{(10)} = (4/15){\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\).
1.2 Coefficients in the Trace Formulae
\(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2}) = (a^{0}\vert \omega )(a^{1}\vert a^{2}) + (a^{1}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{1}\vert a^{3})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{2})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{0}\vert a^{3}) + (a^{1}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2}\vert a^{3}) = (a^{0}\vert \omega )(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{0}\vert a^{1}\vert a^{3})+(a^{3}\vert \omega )(a^{0}\vert a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert a^{1})(a^{2}\vert a^{3}) = (a^{0}\vert a^{1})(a^{2}\vert a^{3}) + (a^{0}\vert a^{2})(a^{1}\vert a^{3}) + (a^{0}\vert a^{3})(a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{3}\vert \omega )(a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{4}\vert \omega )(a^{2}\vert a^{3})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{4})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{3})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{2})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{4}) + (a^{1}\vert \omega )(a^{2}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{3}) + (a^{1}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{2}) + (a^{2}\vert \omega )(a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert \omega )(a^{2}\vert a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{2}\vert \omega )(a^{1}\vert a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{3}\vert \omega )(a^{1}\vert a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{4}\vert \omega )(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{2}\vert \omega )(a^{0}\vert a^{3}\vert a^{4})+(a^{1}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{2}\vert a^{4})+(a^{1}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{3}\vert \omega )(a^{0}\vert a^{1}\vert a^{4}) + (a^{2}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1}\vert a^{3}) + (a^{3}\vert \omega )(a^{4}\vert \omega )(a^{0}\vert a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert \omega )(a^{1}\vert a^{2})(a^{3}\vert a^{4}) = (a^{0}\vert \omega )(a^{1}\vert a^{2})(a^{3}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert a^{3})(a^{2}\vert a^{4})+(a^{0}\vert \omega )(a^{1}\vert a^{4})(a^{2}\vert a^{3})+(a^{1}\vert \omega )(a^{0}\vert a^{2})(a^{3}\vert a^{4})+(a^{1}\vert \omega )(a^{0}\vert a^{3})(a^{2}\vert a^{4})+(a^{1}\vert \omega )(a^{0}\vert a^{4})(a^{2}\vert a^{3})+(a^{2}\vert \omega )(a^{0}\vert a^{1})(a^{3}\vert a^{4})+(a^{2}\vert \omega )(a^{0}\vert a^{3})(a^{1}\vert a^{4})+(a^{2}\vert \omega )(a^{0}\vert a^{4})(a^{1}\vert a^{3})+(a^{3}\vert \omega )(a^{0}\vert a^{1})(a^{2}\vert a^{4})+(a^{3}\vert \omega )(a^{0}\vert a^{2})(a^{1}\vert a^{4})+(a^{3}\vert \omega )(a^{0}\vert a^{4})(a^{1}\vert a^{2})+(a^{4}\vert \omega )(a^{0}\vert a^{1})(a^{2}\vert a^{3})+(a^{4}\vert \omega )(a^{0}\vert a^{2})(a^{1}\vert a^{3}) + (a^{4}\vert \omega )(a^{0}\vert a^{3})(a^{1}\vert a^{2})\), \(\mathrm{Sym}(a^{0}\vert a^{1})(a^{2}\vert a^{3}\vert a^{4}) = (a^{0}\vert a^{1})(a^{2}\vert a^{3}\vert a^{4})+(a^{0}\vert a^{2})(a^{1}\vert a^{3}\vert a^{4})+(a^{0}\vert a^{3})(a^{1}\vert a^{2}\vert a^{4})+(a^{0}\vert a^{4})(a^{1}\vert a^{2}\vert a^{3})+(a^{1}\vert a^{2})(a^{0}\vert a^{3}\vert a^{4})+(a^{1}\vert a^{3})(a^{0}\vert a^{2}\vert a^{4})+(a^{1}\vert a^{4})(a^{0}\vert a^{2}\vert a^{3})+(a^{2}\vert a^{3})(a^{0}\vert a^{1}\vert a^{4})+(a^{2}\vert a^{4})(a^{0}\vert a^{1}\vert a^{3})+(a^{3}\vert a^{4})(a^{0}\vert a^{1}\vert a^{2})\).
\(F_{0}^{(3)} = 8 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(F_{1}^{(3)} = -4 {\ast}h{\ast}d{\ast} ((14 {\ast}h + 4) {\ast}c^{2} + (-308 {\ast}h^{2} - 93 {\ast}h- 1) {\ast}c + 170 {\ast}h^{2} + 34 {\ast}h)\), \(F_{2}^{(3)} = h{\ast}d{\ast} (4 {\ast}c^{3} + (-222 {\ast}h- 1) {\ast}c^{2} + (3008 {\ast}h^{2} + 102 {\ast}h) {\ast}c- 1496 {\ast}h^{2})\), \(F_{0}^{(4)} = 16{\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), \(F_{1}^{(4)} = -8{\ast}h{\ast}d{\ast}((210{\ast}h^{2}+162{\ast}h+36){\ast}c^{3}+(-4620{\ast}h^{3}-3227{\ast}h^{2}-861{\ast}h+26){\ast}c^{2}+(-5614{\ast}h^{3}+2915{\ast}h^{2}-485{\ast}h-2){\ast}c-1334{\ast}h^{3}+2622{\ast}h^{2}+92{\ast}h)\), F 2 (4) = 2∗h∗d∗(60∗h∗c 4+(−3330∗h 2−523∗h−487)∗c 3+(45120∗h 3+9648∗h 2+13856∗h−2336)∗c 2+(36376∗h 3−91186∗h 2+43550∗h−2232)∗c−6760∗h 3−47796∗h 2+19756∗h−696), \(F_{3}^{(4)} = 4{\ast}h{\ast}d{\ast}((42{\ast}h+36){\ast}c^{4}+(-1848{\ast}h^{2}-1279{\ast}h+513){\ast}c^{3}+(20328{\ast}h^{3}+13052{\ast}h^{2}-14654{\ast}h+2334){\ast}c^{2}+(-35836{\ast}h^{3}+98516{\ast}h^{2}-43320{\ast}h+2232){\ast}c-16700{\ast}h^{3}+43104{\ast}h^{2}-19756{\ast}h+696)\), F 4 (4) = (1∕2)∗h∗d∗((1128∗h+199)∗c 4+(−46392∗h 2−3311∗h−1768)∗c 3+(497472∗h 3−19488∗h 2+73544∗h−16440)∗c 2+(351008∗h 3−726256∗h 2+326804∗h−17160)∗c−72848∗h 3−344832∗h 2+158048∗h−5568), \(F_{5}^{(4)} = (-1/2){\ast}h{\ast}d{\ast}(60{\ast}c^{5}+(-2976{\ast}h+1023){\ast}c^{4}+(44184{\ast}h^{2}-41669{\ast}h+2850){\ast}c^{3}+(-164544{\ast}h^{3}+426432{\ast}h^{2}-65116{\ast}h-716){\ast}c^{2}+(-22112{\ast}h^{3}+23984{\ast}h^{2}+13092{\ast}h-1528){\ast}c+68816{\ast}h^{3}-150144{\ast}h^{2}+25024{\ast}h)\), \(F_{6}^{(4)} = (1/2){\ast}h{\ast}d{\ast}(60{\ast}c^{5}+(-2640{\ast}h+1311){\ast}c^{4}+(29400{\ast}h^{2}-51901{\ast}h+6954){\ast}c^{3}+(-1920{\ast}h^{3}+530848{\ast}h^{2}-182348{\ast}h+17956){\ast}c^{2}+(-308800{\ast}h^{3}+812112{\ast}h^{2}-333468{\ast}h+16328){\ast}c-64784{\ast}h^{3}+194688{\ast}h^{2}-133024{\ast}h+5568)\), \(F_{0}^{(5)} = 32{\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\), \(F_{1}^{(5)} = -16{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+3366{\ast}h^{2}+1848{\ast}h+360){\ast}c^{3}+(-50820{\ast}h^{4}-64063{\ast}h^{3}-39624{\ast}h^{2}-9203{\ast}h+402){\ast}c^{2}+(-190058{\ast}h^{4}+21757{\ast}h^{3}+50420{\ast}h^{2}-8593{\ast}h-6){\ast}c+14558{\ast}h^{4}-53244{\ast}h^{3}+48082{\ast}h^{2}+348{\ast}h)\), \(F_{2}^{(5)} = (4/5){\ast}h{\ast}d{\ast}((3300{\ast}h^{2}+660{\ast}h-40){\ast}c^{4}+(-183150{\ast}h^{3}-90835{\ast}h^{2}-94567{\ast}h-25578){\ast}c^{3}+(2481600{\ast}h^{4}+1334700{\ast}h^{3}+2540131{\ast}h^{2}+285789{\ast}h-163830){\ast}c^{2}+(7115560{\ast}h^{4}-13778670{\ast}h^{3}+2299334{\ast}h^{2}+2630452{\ast}h-245456){\ast}c+858872{\ast}h^{4}+1045920{\ast}h^{3}-6623912{\ast}h^{2}+2211696{\ast}h-37056)\), \(F_{3}^{(5)} = (8/5){\ast}h{\ast}d{\ast}((2310{\ast}h^{2}+3300{\ast}h+920){\ast}c^{4}+(-101640{\ast}h^{3}-123925{\ast}h^{2}+2681{\ast}h+13794){\ast}c^{3}+(1118040{\ast}h^{4}+1178540{\ast}h^{3}-631298{\ast}h^{2}-179402{\ast}h+81900){\ast}c^{2}+(-228580{\ast}h^{4}+4993420{\ast}h^{3}-750692{\ast}h^{2}-1313196{\ast}h+122728){\ast}c+344284{\ast}h^{4}-2043720{\ast}h^{3}+3258596{\ast}h^{2}-1105848{\ast}h+18528)\), \(F_{4}^{(5)} = (1/5){\ast}h{\ast}d{\ast}(500{\ast}c^{5}+(62040{\ast}h^{2}+7735{\ast}h+25115){\ast}c^{4}+(-2551560{\ast}h^{3}-564175{\ast}h^{2}-1452063{\ast}h+94428){\ast}c^{3}+(27360960{\ast}h^{4}+2744160{\ast}h^{3}+30534534{\ast}h^{2}-6099454{\ast}h-348380){\ast}c^{2}+(64210400{\ast}h^{4}-208744320{\ast}h^{3}+91532216{\ast}h^{2}+3799848{\ast}h-935504){\ast}c-909872{\ast}h^{4}-64093920{\ast}h^{3}+8306672{\ast}h^{2}+7635744{\ast}h-148224)\), \(F_{5}^{(5)} = (-1/5){\ast}h{\ast}d{\ast}((3300{\ast}h+1500){\ast}c^{5}+(-163680{\ast}h^{2}-585{\ast}h+39235){\ast}c^{4}+(2430120{\ast}h^{3}-2017145{\ast}h^{2}-1433609{\ast}h+240084){\ast}c^{3}+(-9049920{\ast}h^{4}+31066560{\ast}h^{3}+13487402{\ast}h^{2}-7601082{\ast}h+456180){\ast}c^{2}+(-41190560{\ast}h^{4}-16962080{\ast}h^{3}+49902728{\ast}h^{2}-9779816{\ast}h-107152){\ast}c-808336{\ast}h^{4}+9987680{\ast}h^{3}-17678384{\ast}h^{2}+1778272{\ast}h+188928)\), \(F_{6}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((3300{\ast}h+1500){\ast}c^{5}+(-145200{\ast}h^{2}+25815{\ast}h+46595){\ast}c^{4}+(1617000{\ast}h^{3}-3008545{\ast}h^{2}-1412161{\ast}h+350436){\ast}c^{3}+(-105600{\ast}h^{4}+40494880{\ast}h^{3}+8437018{\ast}h^{2}-9036298{\ast}h+1111380){\ast}c^{2}+(-43019200{\ast}h^{4}+22985280{\ast}h^{3}+43897192{\ast}h^{2}-20285384{\ast}h+874672){\ast}c+1945936{\ast}h^{4}-6362080{\ast}h^{3}+8390384{\ast}h^{2}-7068512{\ast}h+337152)\), \(F_{7}^{(5)} = (-2/5){\ast}h{\ast}d{\ast}((660{\ast}h+460){\ast}c^{5}+(-51150{\ast}h^{2}-33647{\ast}h+6897){\ast}c^{4}+(1302180{\ast}h^{3}+829156{\ast}h^{2}-451426{\ast}h+40950){\ast}c^{3}+(-10919040{\ast}h^{4}-7782640{\ast}h^{3}+9315274{\ast}h^{2}-2071698{\ast}h+61364){\ast}c^{2}+(21416272{\ast}h^{4}-59346500{\ast}h^{3}+27298188{\ast}h^{2}-1866624{\ast}h+9264){\ast}c+9686000{\ast}h^{4}-25000320{\ast}h^{3}+11458480{\ast}h^{2}-403680{\ast}h)\), \(F_{8}^{(5)} = (-1/2){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(-8078{\ast}h+2861){\ast}c^{5}+(221174{\ast}h^{2}-203081{\ast}h+19684){\ast}c^{4}+(-2214880{\ast}h^{3}+4802538{\ast}h^{2}-965274{\ast}h+52252){\ast}c^{3}+(4236288{\ast}h^{4}-38346896{\ast}h^{3}+13282628{\ast}h^{2}-1695920{\ast}h+25584){\ast}c^{2}+(12825792{\ast}h^{4}-32289856{\ast}h^{3}+12276272{\ast}h^{2}-758816{\ast}h+17536){\ast}c-155904{\ast}h^{4}-1722368{\ast}h^{3}+4176000{\ast}h^{2}-215296{\ast}h)\), \(F_{01423}^{(5)} = (-1/10){\ast}h{\ast}d{\ast}(500{\ast}c^{6}+(-33130{\ast}h+25625){\ast}c^{5}+(707230{\ast}h^{2}-1434751{\ast}h+485426){\ast}c^{4}+(-4128560{\ast}h^{3}+27827338{\ast}h^{2}-20020070{\ast}h+4414912){\ast}c^{3}+(-15989760{\ast}h^{4}-192127280{\ast}h^{3}+258582588{\ast}h^{2}-134080200{\ast}h+15339472){\ast}c^{2}+(136946816{\ast}h^{4}-932999600{\ast}h^{3}+1000619648{\ast}h^{2}-291521120{\ast}h+11640256){\ast}c+25836352{\ast}h^{4}-152808960{\ast}h^{3}+252283328{\ast}h^{2}-102259584{\ast}h+4475904)\), \(F_{01324}^{(5)} = (1/10){\ast}h{\ast}d{\ast}(500{\ast}c^{6}+(-35770{\ast}h+23785){\ast}c^{5}+(911830{\ast}h^{2}-1300163{\ast}h+457838){\ast}c^{4}+(-9337280{\ast}h^{3}+24510714{\ast}h^{2}-18214366{\ast}h+4251112){\ast}c^{3}+(27686400{\ast}h^{4}-160996720{\ast}h^{3}+221321492{\ast}h^{2}-125793408{\ast}h+15094016){\ast}c^{2}+(51281728{\ast}h^{4}-695613600{\ast}h^{3}+891426896{\ast}h^{2}-284054624{\ast}h+11603200){\ast}c-12907648{\ast}h^{4}-52807680{\ast}h^{3}+206449408{\ast}h^{2}-100644864{\ast}h+4475904)\), \(F_{12034}^{(5)} = (1/10){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(-3150{\ast}h+5575){\ast}c^{5}+(15650{\ast}h^{2}-148721{\ast}h+119806){\ast}c^{4}+(-550800{\ast}h^{3}-1490922{\ast}h^{2}-4041146{\ast}h+949728){\ast}c^{3}+(14745600{\ast}h^{4}+53833840{\ast}h^{3}+29411876{\ast}h^{2}-25511768{\ast}h+3284592){\ast}c^{2}+(-167754624{\ast}h^{4}+73524400{\ast}h^{3}+137639360{\ast}h^{2}-61086944{\ast}h+2624448){\ast}c+3115968{\ast}h^{4}-16839680{\ast}h^{3}+31808832{\ast}h^{2}-21690496{\ast}h+1007616)\), \(F_{01234}^{(5)} = h{\ast}d{\ast}(50{\ast}c^{6}+(-5304{\ast}h+1238){\ast}c^{5}+(204604{\ast}h^{2}-99615{\ast}h+13827){\ast}c^{4}+(-3383208{\ast}h^{3}+2721160{\ast}h^{2}-892294{\ast}h+59250){\ast}c^{3}+(20120832{\ast}h^{4}-26868960{\ast}h^{3}+17636364{\ast}h^{2}-3522876{\ast}h-65568){\ast}c^{2}+(41237472{\ast}h^{4}-107859720{\ast}h^{3}+46229896{\ast}h^{2}-423632{\ast}h-256192){\ast}c-772320{\ast}h^{4}-27659904{\ast}h^{3}+9574560{\ast}h^{2}+1892928{\ast}h-31488)\), \(F_{02134}^{(5)} = (-1/10){\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(150{\ast}h+7215){\ast}c^{5}+(-237790{\ast}h^{2}-280007{\ast}h+130072){\ast}c^{4}+(5835360{\ast}h^{3}+1550206{\ast}h^{2}-5491014{\ast}h+812348){\ast}c^{3}+(-38223360{\ast}h^{4}+30779440{\ast}h^{3}+63018188{\ast}h^{2}-27827312{\ast}h+1723824){\ast}c^{2}+(-139274688{\ast}h^{4}-126848480{\ast}h^{3}+208934224{\ast}h^{2}-38241856{\ast}h-180160){\ast}c+69888{\ast}h^{4}+19482880{\ast}h^{3}-41267328{\ast}h^{2}+3697664{\ast}h+692736)\), \(F_{03214}^{(5)} = F_{04213}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((1650{\ast}h+820){\ast}c^{5}+(-126720{\ast}h^{2}-65643{\ast}h+5133){\ast}c^{4}+(3193080{\ast}h^{3}+1520564{\ast}h^{2}-724934{\ast}h-68690){\ast}c^{3}+(-26484480{\ast}h^{4}-11527200{\ast}h^{3}+16803156{\ast}h^{2}-1157772{\ast}h-780384){\ast}c^{2}+(14239968{\ast}h^{4}-100186440{\ast}h^{3}+35647432{\ast}h^{2}+11422544{\ast}h-1402304){\ast}c-1523040{\ast}h^{4}+18161280{\ast}h^{3}-36538080{\ast}h^{2}+12694080{\ast}h-157440)\), \(F_{02413}^{(5)} = F_{03412}^{(5)} = (-1/5){\ast}h{\ast}d{\ast}((3630{\ast}h+5660){\ast}c^{5}+(-199320{\ast}h^{2}-209673{\ast}h+193503){\ast}c^{4}+(3472920{\ast}h^{3}+1907324{\ast}h^{2}-7596850{\ast}h+2076826){\ast}c^{3}+(-18585600{\ast}h^{4}-196400{\ast}h^{3}+96084724{\ast}h^{2}-62800300{\ast}h+7605776){\ast}c^{2}+(36408928{\ast}h^{4}-385775160{\ast}h^{3}+469619144{\ast}h^{2}-143863520{\ast}h+5776288){\ast}c+13307936{\ast}h^{4}-72098560{\ast}h^{3}+115701664{\ast}h^{2}-50591552{\ast}h+2237952)\), \(F_{02314}^{(5)} = F_{04312}^{(5)} = (1/5){\ast}h{\ast}d{\ast}((2310{\ast}h+4740){\ast}c^{5}+(-97020{\ast}h^{2}-142379{\ast}h+179709){\ast}c^{4}+(868560{\ast}h^{3}+249012{\ast}h^{2}-6693998{\ast}h+1994926){\ast}c^{3}+(3252480{\ast}h^{4}+15368880{\ast}h^{3}+77454176{\ast}h^{2}-58656904{\ast}h+7483048){\ast}c^{2}+(-6423616{\ast}h^{4}-267082160{\ast}h^{3}+415022768{\ast}h^{2}-140130272{\ast}h+5757760){\ast}c-6064064{\ast}h^{4}-22097920{\ast}h^{3}+92784704{\ast}h^{2}-49784192{\ast}h+2237952)\), \(F_{04123}^{(5)} = F_{03124}^{(5)} = (-2/5){\ast}h{\ast}d{\ast}(150{\ast}c^{6}+(-10060{\ast}h+5380){\ast}c^{5}+(217020{\ast}h^{2}-323853{\ast}h+57123){\ast}c^{4}+(-1309760{\ast}h^{3}+6390724{\ast}h^{2}-2579346{\ast}h+268402){\ast}c^{3}+(-4260480{\ast}h^{4}-40238760{\ast}h^{3}+32357832{\ast}h^{2}-9076728{\ast}h+462936){\ast}c^{2}+(-18786432{\ast}h^{4}-72074440{\ast}h^{3}+67578896{\ast}h^{2}-10508984{\ast}h-23120){\ast}c-177408{\ast}h^{4}+2717760{\ast}h^{3}-5096832{\ast}h^{2}+655296{\ast}h+173184)\), \(F_{14023}^{(5)} = F_{13024}^{(5)} = (1/5){\ast}h{\ast}d{\ast}(300{\ast}c^{6}+(-21770{\ast}h+9940){\ast}c^{5}+(560760{\ast}h^{2}-582063{\ast}h+109113){\ast}c^{4}+(-5812600{\ast}h^{3}+11260884{\ast}h^{2}-4433758{\ast}h+605494){\ast}c^{3}+(17963520{\ast}h^{4}-68950320{\ast}h^{3}+47912508{\ast}h^{2}-16995684{\ast}h+1706256){\ast}c^{2}+(-51812832{\ast}h^{4}-43962440{\ast}h^{3}+99510360{\ast}h^{2}-32440512{\ast}h+1356064){\ast}c+1168224{\ast}h^{4}-12725760{\ast}h^{3}+26344416{\ast}h^{2}-11383488{\ast}h+503808)\), \(E_{3}^{(3)} = 8 {\ast} h {\ast} d {\ast} ((70 {\ast} h^{2} + 42 {\ast} h + 8) {\ast} c + 29 {\ast} h^{2} - 57 {\ast} h - 2)\), \(E_{2}^{(3)} = -12{\ast}h{\ast}d{\ast}((14{\ast}h+4){\ast}c^{2} +(-308{\ast}h^{2} -93{\ast}h-1){\ast}c+170{\ast}h^{2} +34{\ast}h)\), \(E_{1}^{(3)} = 2 {\ast}h{\ast}d{\ast} (4 {\ast}c^{3} + (-222 {\ast}h- 1) {\ast}c^{2} + (3008 {\ast}h^{2} + 102 {\ast}h) {\ast}c- 1496 {\ast}h^{2})\), \(E_{4}^{(4)} = 16{\ast}h{\ast}d{\ast}((1050{\ast}h^{3}+1260{\ast}h^{2}+606{\ast}h+108){\ast}c^{2}+(3305{\ast}h^{3}-498{\ast}h^{2}-701{\ast}h+78){\ast}c-251{\ast}h^{3}+918{\ast}h^{2}-829{\ast}h-6)\), E 3 (4) = −48∗h∗d∗((210∗h 2+162∗h+36)∗c 3+(−4620∗h 3−3227∗h 2−861∗h+26)∗c 2+(−5614∗h 3+2915∗h 2−485∗h−2)∗c−1334∗h 3+2622∗h 2+92∗h), \(E_{2}^{(4)} = 4{\ast}h{\ast}d{\ast}((366{\ast}h+108){\ast}c^{4}+(-18864{\ast}h^{2}-5929{\ast}h-409){\ast}c^{3}+(241464{\ast}h^{3}+77748{\ast}h^{2}+11462{\ast}h-2342){\ast}c^{2}+(37996{\ast}h^{3}-69196{\ast}h^{2}+44240{\ast}h-2232){\ast}c-77140{\ast}h^{3}-61872{\ast}h^{2}+19756{\ast}h-696)\), \(E_{1}^{(4)} = 2{\ast}h{\ast}d{\ast}((1464{\ast}h+487){\ast}c^{4}+(-61176{\ast}h^{2}-13543{\ast}h+2336){\ast}c^{3}+(660096{\ast}h^{3}+84928{\ast}h^{2}-43688{\ast}h+2232){\ast}c^{2}+(64320{\ast}h^{3}+61872{\ast}h^{2}-19756{\ast}h+696){\ast}c-206448{\ast}h^{3})\), \(E_{5}^{(5)} = 32{\ast}h{\ast}d{\ast}((11550{\ast}h^{4}+23100{\ast}h^{3}+20130{\ast}h^{2}+8580{\ast}h+1440){\ast}c^{2}+(76675{\ast}h^{4}+30590{\ast}h^{3}-25615{\ast}h^{2}-10898{\ast}h+1608){\ast}c+3767{\ast}h^{4}-18410{\ast}h^{3}+29929{\ast}h^{2}-16342{\ast}h-24)\), \(E_{4}^{(5)} = -160{\ast}h{\ast}d{\ast}((2310{\ast}h^{3}+3366{\ast}h^{2}+1848{\ast}h+360){\ast}c^{3}+(-50820{\ast}h^{4}-64063{\ast}h^{3}-39624{\ast}h^{2}-9203{\ast}h+402){\ast}c^{2}+(-190058{\ast}h^{4}+21757{\ast}h^{3}+50420{\ast}h^{2}-8593{\ast}h-6){\ast}c+14558{\ast}h^{4}-53244{\ast}h^{3}+48082{\ast}h^{2}+348{\ast}h)\), \(E_{3}^{(5)} = 8{\ast}h{\ast}d{\ast}((13530{\ast}h^{2}+11220{\ast}h+2680){\ast}c^{4}+(-671220{\ast}h^{3}-553445{\ast}h^{2}-181091{\ast}h-9774){\ast}c^{3}+(8317320{\ast}h^{4}+6205020{\ast}h^{3}+3186368{\ast}h^{2}+33372{\ast}h-81960){\ast}c^{2}+(13545380{\ast}h^{4}-12577080{\ast}h^{3}+2346592{\ast}h^{2}+1321316{\ast}h-122728){\ast}c+2750596{\ast}h^{4}-4039320{\ast}h^{3}-3472036{\ast}h^{2}+1105848{\ast}h-18528)\), E 2 (5) = −4∗h∗d∗((1320∗h+420)∗c 5+(−182820∗h 2−101429∗h−18681)∗c 4+(5969040∗h 3+3213887∗h 2+527763∗h−122880)∗c 3+(−58143360∗h 4−27737760∗h 3−6853602∗h 2+3391274∗h−184092)∗c 2+(−19549216∗h 4+50103960∗h 3−30930304∗h 2+2972472∗h−27792)∗c+17527600∗h 4+30443040∗h 3−11458480∗h 2+403680∗h), \(E_{1}^{(5)} = -2{\ast}h{\ast}d{\ast}(100{\ast}c^{6}+(1470{\ast}h+6495){\ast}c^{5}+(-501790{\ast}h^{2}-424803{\ast}h+40956){\ast}c^{4}+(15693120{\ast}h^{3}+8719374{\ast}h^{2}-2073438{\ast}h+61364){\ast}c^{3}+(-141373440{\ast}h^{4}-54143280{\ast}h^{3}+27458268{\ast}h^{2}-1866624{\ast}h+9264){\ast}c^{2}+(-12282432{\ast}h^{4}-30443040{\ast}h^{3}+11458480{\ast}h^{2}-403680{\ast}h){\ast}c+47895936{\ast}h^{4})\).
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yamauchi, H. (2014). Extended Griess Algebras and Matsuo-Norton Trace Formulae. In: Kohnen, W., Weissauer, R. (eds) Conformal Field Theory, Automorphic Forms and Related Topics. Contributions in Mathematical and Computational Sciences, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43831-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-43831-2_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43830-5
Online ISBN: 978-3-662-43831-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)