Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 97))

  • 998 Accesses

Abstract

In this chapter, we briefly introduce the switched system, optimal control and fermentation process, and their literature reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N.U., Teo, K.L.: Optimal Control of Distributed Parameter Systems. North Holland, New York (1981)

    MATH  Google Scholar 

  2. Andres-Toro, B., Giron-Sierra, J.M., Lopez-Orozco, J.A., Fernandez-Conde, C.: Application of genetic algorithms and simulations for the optimization of batch fermentation control. Proc. IEEE Int. Conf. Syst. Man Cybern. 1, 392–397 (1997)

    Google Scholar 

  3. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.: A gradient descent approach to optimal mode scheduling in hybrid dynamical systems. J. Optim. Theory Appl. 136, 167–186 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Babaali, M., Egerstedt, M.: Observability for switched linear systems. In: Rajeev, A., George, J.P. (eds.) Hybrid Systems: Computation and Control. Springer, New York (2004)

    Google Scholar 

  5. Bailey, J.E., Ollis, D.F.: Biochemical Engineering Fundamentals. McGraw-Hill, New York (1986)

    Google Scholar 

  6. Barbirato, F., Himmi, E.H., Conte, T., Bories, A.: 1,3-propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Prod. 7, 281–289 (1998)

    Google Scholar 

  7. Barton, P.I., Allgor, R.J., Feehery, W.F., Galan, S.: Dynamic optimization in a discontinuous world. Ind. Eng. Chem. Res. 37, 966–981 (1998)

    Google Scholar 

  8. Bastin, G., Van Impe, J.F.: Nonlinear and adaptive control in biotechnology: a tutorial. Eur. J. Control 1, 37–53 (1995)

    MATH  Google Scholar 

  9. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  10. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45, 1864–1876 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Bengea, S.C., Decarlo, R.A.: Optimal and suboptimal control of switching systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, pp. 5295–5300 (2003)

    Google Scholar 

  13. Bengea, S.C., Decarlo, R.A.: Optimal control of switching systems. Automatica 41, 11–27 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Biebl, H., Menzel, K., Zeng, A.P.: Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999)

    Google Scholar 

  15. Blondel, V.D., Tsitsiklis, J.N.: Complexity of stability and controllability of elementary hybrid systems. Automatica 35, 479–490 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Bonvin, D.: Optimal operation of batch reactors view a personal. J. Process Control 8, 355–368 (1998)

    Google Scholar 

  17. Branicky, M.: Stability of switched and hybrid systems. In: Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, pp. 3498–3503 (1994)

    Google Scholar 

  18. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43, 31–45 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Breakwell, J.V.: The optimization of trajectories. J. Soc. Ind. Appl. Math. 7, 215–247 (1959)

    MATH  MathSciNet  Google Scholar 

  20. Bryson, A., Ho, Y.C.: Applied Optimal Control. Halsted Press, New York (1975)

    Google Scholar 

  21. Bukovskiy, A.G.: Distributed Control Systems. American Elsevier, New York (1969)

    Google Scholar 

  22. Caldwell, T., Murphy, T.: An adjoint method for second-order switching time optimization. In: Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, pp. 2155–2162 (2010)

    Google Scholar 

  23. Cesari, L.: An existence theorem in problems of optimal control. SIAM J. Control 3, 7–22 (1965)

    MATH  MathSciNet  Google Scholar 

  24. Cesari, L.: Existence theorems for optimal solutions in Pontryagin and Lagrange problems. SIAM J. Control 3, 475–498 (1966)

    MathSciNet  Google Scholar 

  25. Chen, X., Zhang, D.J., Qi, W.T., Gao, S.J., Xiu, Z.L., Xu, P.: Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Appl. Microbiol. Biotechnol. 63, 143–146 (2003)

    Google Scholar 

  26. Cheng, K.K., Zhang, J.N., Liu, D.H., Sun, Y., Liu, H.J.: Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem. 42, 740–744 (2007)

    Google Scholar 

  27. Chiou, J.P., Wang, F.S.: Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Comput. Chem. Eng. 23, 1277–1291 (1999)

    Google Scholar 

  28. Clarke, F.H., Ledyaev, S., Stern, R.J.: Nonsmooth Analysis and Control Theory. Springe, New York (1998)

    MATH  Google Scholar 

  29. Collins, P., van Schuppen, J.H.: Observability of piecewise-affine hybrid systems. In: Hybrid Systems: Computation and Control. Volume 2993 of Lecture Notes in Computer Science, pp. 265–279. Springer, Berlin (2004)

    Google Scholar 

  30. Curtain, R.F., Pritchard, A.J.: Infinite Dimensional Linear Systems Theory. Springer, Berlin (1978)

    MATH  Google Scholar 

  31. Daniel, L.: Switching in Systems and Control. Birhäuser, Boston (2003)

    MATH  Google Scholar 

  32. D’Ans, G., Koxotowc, P., Gottlieb, D.: Time-optimal control for a model of bacterial growth. J. Optim. Theory Appl. 7, 61–69 (1971)

    MATH  MathSciNet  Google Scholar 

  33. D’Ans, G., Koxotowc, P., Gottlieb, D.: A nonlinear regulator problem for a model of biological waste treatment. IEEE Trans. Autom. Control 16, 341–347 (1971)

    Google Scholar 

  34. D’Ans, G., Koxotowc, P., Gottlieb, D.: Optimal control of bacterial growth. Automatica 8, 729–736 (1972)

    Google Scholar 

  35. Dayawansa, W.P., Martin, C.F.: A converse Lyapunov therorem for a class of dynamical systems which undergo switching. IEEE Trans. Autom. Control 44, 751–760 (1999)

    MATH  MathSciNet  Google Scholar 

  36. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE 88, 1069–1082 (2000)

    Google Scholar 

  37. Deckwer, W.D.: Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol. Rev. 16, 143–149 (1995)

    Google Scholar 

  38. Delmotte, F., Verriest, E.I., Egestedt, M.: Optimal impulsive control of delay systems. ESAIM Control Optim. Calc. Var. 14, 767–779 (2008)

    MATH  MathSciNet  Google Scholar 

  39. De Schutter, B., Heemels, W.P.M.H., Lunze, J., Prieur, C.: Survey of modeling, analysis, and control of hybrid systems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control-Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  40. Dolcetta, J.C., Evans, L.C.: Optimal switching for ordinary differential equations. SIAM J. Control Optim. 22, 143–161 (1984)

    MATH  MathSciNet  Google Scholar 

  41. Dontchev, A.S., Hager, W.W., Poore, A.B.: Optimality, stability and convergence in nonlinear control. Appl. Math. Optim. 31, 297–326 (1995)

    MATH  MathSciNet  Google Scholar 

  42. Egerstedt, M., Ögren, P., Shakernia, O., Lygeros, J.: Toward optimal control of switched linear systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, pp. 587–592 (2000)

    Google Scholar 

  43. Egerstedt, M., Wardi, Y., Delmotte, F.: Optimal control of switching times in switched dynamical systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, pp. 2138–2143 (2003)

    Google Scholar 

  44. Elnagar, G.N., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998)

    MATH  MathSciNet  Google Scholar 

  45. Elnagar, G.N., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995)

    MATH  MathSciNet  Google Scholar 

  46. Ezzine, J., Haddad, A.H.: Controllability and observability of hybrid systems. Int. J. Control 49, 2045–2055 (1989)

    MATH  MathSciNet  Google Scholar 

  47. Fahroo, F., Ross, I.M.: Direct trajectory optimization pseudospectral method. J. Guid. Control Dyn. 25, 160–166 (2002)

    Google Scholar 

  48. Filippov, A.F.: On certain questions in the theory of optimal control. SIAM J. Control Optim. 1, 76–84 (1962)

    MATH  Google Scholar 

  49. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (1975)

    MATH  Google Scholar 

  50. Forage, R., Lin, E.C.C.: dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB418. J. Bacteriol. 15, 591–599 (1982)

    Google Scholar 

  51. Freund, A.: Uber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Monatsh. Chimie 2, 636–641 (1881)

    Google Scholar 

  52. Gao, C.X., Feng, E.M., Wang, Z.T., Xiu, Z.L.: Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. J. Ind. Manag. Optim. 1, 377–388 (2005)

    MATH  MathSciNet  Google Scholar 

  53. Gao, J.G., Shen, B.Y., Feng, E.M., Xiu, Z.L.: Modelling and optimal control for an impulsive dynamical system in microbial fed-batch culture. Comput. Appl. Math. 32, 275–290 (2013)

    MATH  MathSciNet  Google Scholar 

  54. Ge, S.S., Sun, Z.D., Lee, T.H.: Reachability and controllability of switched linear discrete-time systems. IEEE Trans. Autom. Control 46, 1437–1441 (2001)

    MATH  MathSciNet  Google Scholar 

  55. Giua, A., Seatzu, C., Van der Mee, C.M.: Optimal control of autonomous linear systems switched with a preassigned finite sequence. In: Proceedings of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, pp. 144–149 (2001)

    Google Scholar 

  56. Goncalves, J.M., Megretski, A., Dahleh, M.A.: Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Trans. Autom. Control 48, 2089–2106 (2003)

    MathSciNet  Google Scholar 

  57. Hespanha, J., Liberzon, D., Morse, A.S.: Overcoming the limitations of adaptive control by means of logic-based switching. Syst. Control Lett. 49, 49–56 (2003)

    MATH  MathSciNet  Google Scholar 

  58. Hicks, G.H., Ray, W.H.: Approximation methods for optimal control synthesis. Can. J. Chem. Eng. 49, 522–528 (1971)

    Google Scholar 

  59. Hirschmann, S., Baganz, K., Koschik, I., Vorlop, K.D.: Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch. Völkenrode 55, 261–267 (2005)

    Google Scholar 

  60. Hou, L., Michel, A.N., Ye, H.: Stability analysis of switched systems. In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, pp. 1208–1212 (1996)

    Google Scholar 

  61. Jaddu, H., Shimemura, E.: Computational methods based on the state parameterization for solving constrained optimal control problems. Int. J. Syst. Sci. 30, 275–282 (1999)

    MATH  Google Scholar 

  62. Jadot, F., Bastin, G., Van Impe, J.F.: Optimal adaptive control of a bioprocess with yield-productivity conflict. J. Biotechnol. 65, 61–68 (1998)

    Google Scholar 

  63. Johnson, A.: The control of fed-batch fermentation processes-a survey. Automatica 23, 691–705 (1987)

    MATH  Google Scholar 

  64. Kalman, R.E.: Contribution to the theory of optimal control. Bol. Soc. Mat. Mex., 5, 102–119 (1960)

    MathSciNet  Google Scholar 

  65. Kamien, M.I., Schwartz, N.L.: Dynamic Optimization-The Calculus of Variations and Optimal Control in Economics and Management. Elsevier Sciences B.V., Amsterdam (1991)

    MATH  Google Scholar 

  66. Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Dover, New York (1992)

    Google Scholar 

  67. Kim, D.K., Park, P.G., Ko, J.W.: Output-feedback H ∞ control of systems over communication networks using a deterministic switching system approach. Automatica 40, 1205–1212 (2004)

    MATH  MathSciNet  Google Scholar 

  68. Kleban, J.: Switched Systems. In-Teh, Vukovar (2009)

    Google Scholar 

  69. Korytowski, A., Szymkat, M., Maurer, H., Vossen, G.: Optimal control of a fedbatch fermentation process: numerical methods, sufficient conditions and sensitivity analysis. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancún, pp. 1551–1556 (2008)

    Google Scholar 

  70. Kraft, D.: On converting optimal control problems into nonlinear programming problems. In: Schittkowski, K. (ed.) Computational Mathematical Programming. Springer, Berlin, 261–280 (1985)

    Google Scholar 

  71. Kulkarniand, S.R., Ramadge, P.J.: Model and controller selection policies based on output prediction errors. IEEE Trans. Autom. Control 41, 1594–1604 (1996)

    Google Scholar 

  72. Lee, J., Lee, S., Park, S., Middeelberg, A.: Control of fed-batch fermentations. Biotechnol. Adv. 17, 29–48 (1999)

    Google Scholar 

  73. Lee, K.K., Arapostathis, A.: On the controllability of piecewise linear hypersurface systems. Syst. Control Lett. 9, 89–96 (1987)

    MATH  MathSciNet  Google Scholar 

  74. Lee, S.Y., Hong, S.H., Lee, S.H., Park, S.J.: Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci. 4, 157–164 (2004)

    MATH  Google Scholar 

  75. Li, R., Teo, K.L., Wong, K.H., Duan, G.R.: Control parameterization enhancing transform for optimal control of switched systems. Math. Comput. Model. 43, 1393–1403 (2006)

    MATH  MathSciNet  Google Scholar 

  76. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19, 59–70 (1999)

    Google Scholar 

  77. Lim, H.C., Chen, B.J., Creagan, C.C.: An analysis of extended and exponentially-fed-batch cultures. Biotechnol. Bioeng. 1, 425–429 (1977)

    Google Scholar 

  78. Lim, H.C., Tayeb, Y.J., Modak, J.M., Bonte, P.: Computational algorithms for optimal feed rates for a class of fed-batch fermentation: numerical results for penicillin and cell mass production. Biotechnol. Bioeng. 28, 1408–1420 (1986)

    Google Scholar 

  79. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54, 308–322 (2009)

    MathSciNet  Google Scholar 

  80. Lin, Q., Loxton, R., Teo, K.L.: Optimal control of nonlinear switched systems: computational methods and applications. J. Oper. Res. Soc. China, 1, 275–311 (2013)

    MATH  Google Scholar 

  81. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)

    MATH  MathSciNet  Google Scholar 

  82. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  83. Loewen, P.D., Rockafellar, R.T.: New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 1496–1551 (1996)

    MATH  MathSciNet  Google Scholar 

  84. Loewen, P.D., Rockafellar, R.T.: Bolza problems with general time constraints. SIAM J. Control Optim. 35, 2050–2069 (1997)

    MATH  MathSciNet  Google Scholar 

  85. Loxton, R., Lin, Q., Rehbock, V., Teo, K.L.: Control parameterization for optimal control problems with continuous inequality constraints: new convergence results. Numer. Algebra Control Optim. 2, 571–599 (2012)

    MATH  MathSciNet  Google Scholar 

  86. Loxton, R.C., Teo, K.L., Rehbock, V.: Computational method for a class of switched system optimal control problems. IEEE Trans. Autom. Control 54, 2455–2460 (2009)

    MathSciNet  Google Scholar 

  87. Loxton, R.C., Teo, K.L., Rehbock, V., Ling, W.K.: Optimal switching instants for a switched capacitor DC/DC power converter. Automatica 45, 973–980 (2009)

    MATH  MathSciNet  Google Scholar 

  88. Luus, R.: Piecewise linear continuous optimal control by iterative dynamic programing. Ind. Eng. Chem. Res. 32, 856–865 (1993)

    Google Scholar 

  89. McNeil, B., Harvey, L.M.: Practical Fermentation Technology. Wiley, Chichester (2008)

    Google Scholar 

  90. Menzel, K., Zeng, A.P., Deckwer, W.D.: High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20, 82–86 (1997)

    Google Scholar 

  91. Meyer, C., Schroder, S., De Doncker, R.W.: Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems. IEEE Trans. Power Electron. 19, 1333–1340 (2004)

    Google Scholar 

  92. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Autom. Control 50, 1670–1680 (2005)

    MathSciNet  Google Scholar 

  93. Miele, A.: Method of particular solutions for linear two-point boundary-value problems. J. Optim. Theory Appl. 2, 315–334 (1968)

    MathSciNet  Google Scholar 

  94. Mignone, D., Ferrari-Trecate, G., Morari, M.: Stability and stabilization of piecewise affine and hybrid systems: an LMI approach. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, pp. 504–509 (2000)

    Google Scholar 

  95. Modak, J.M., Lim, H.C., Tayeb, Y.J.: General characteristics of optimal feed rate profiles for various fed-batch fermentation processes. Biotechnol. Bioeng. 28, 1396–1407 (1986)

    Google Scholar 

  96. Morse, A.S.: Supervisory control of families of linear set-point controllers, part I: exact matcthing. IEEE Trans. Autom. Control 41, 1411–1431 (1996)

    MathSciNet  Google Scholar 

  97. Müller, M.A., Martius, P., Allgöwer, F.: Model predictive control of switched nonlinear systems under average dwell-time. J. Process Control 22, 1702–1710 (2012)

    Google Scholar 

  98. Nagy, Z.K., Braatz, R.D.: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control 14, 411–422 (2004)

    Google Scholar 

  99. Nakamura, C.E., et al.: Method for the production of 1,3-propanediol by recombinant microorganisms. US Patent No. 6,013,494 (2000)

    Google Scholar 

  100. Nakamura, C.E., Whited, G.M.: Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003)

    Google Scholar 

  101. Nielsen, J., Villadsen, J.: Modelling of microbial kinetics. Chem. Eng. Sci. 47, 4225–4270 (1992)

    Google Scholar 

  102. Oberle, H.J., Grimm, W.: BNDSCO-a program for the numerical solution of optimal control problems. Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany, Internal Report 515-89/22 (1989)

    Google Scholar 

  103. Oberle, H.J., Sothmann, B.: Numerical computation of optimal feed rates for a fed-batch fermentation model. J. Optim. Theory Appl. 100, 1–13 (1993)

    Google Scholar 

  104. Ohno, H., Nakanishi, E., Takamatsu, T.: Optimal control of a semibatch fermentation. Biotechnol. Bioeng. 18, 837–864 (1976)

    Google Scholar 

  105. Panda, B.P., Ali, M., Javed, S.: Fermentation process optimization. Res. J. Microbiol. 2, 201–208 (2007)

    Google Scholar 

  106. Panpanikolaou, S.: Microbial conversion of glycerol into 1,3-propanediol: glycerol assimilation, biochemical events related with 1,3-propanediol biosynthesis and biochemical engineering of the process. In: Aggelis, G.(ed.) Microbial Conversions of Raw Glycerol, pp. 137–168. Nova Science Publishers, New York (2009)

    Google Scholar 

  107. Papanikolaou, S., Fick, M., Aggelis, G.: The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J. Chem. Technol. Biotechnol. 79, 1189–1196 (2004)

    Google Scholar 

  108. Piccoli, B.: Necessary conditions for hybrid optimization. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, pp. 410–415 (1999)

    Google Scholar 

  109. Polak, E.: Optimazation Algorithms and Consistent Approximation. Springer, New York (1997)

    Google Scholar 

  110. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, V., Mischenko, E.E: The Mathematical Theory of Optimal Control Process. Wiley, New York (1962)

    Google Scholar 

  111. Ramirez, W.F.: Application of Optimal Control Theory to Enhanced Oil Recovery. Elsevier Sciences B.V., Amsterdam (1987)

    Google Scholar 

  112. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 29, 1667–1694 (2003)

    MathSciNet  Google Scholar 

  113. Rocha, M., Neves, J., Rocha, I., Ferreira, E.C.: Evolutionary algorithms for optimal control in fed-Batch fermentation processes. In: Gü R.R., et al. (eds.) Applications of Evolutionary Computing, pp. 84–93. Springer, Berlin (2004)

    Google Scholar 

  114. Rosenbrock, H., Storey, C.: Computational Techniques for Chemical Engineers. Pergamon Press, Oxford (1966)

    Google Scholar 

  115. Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving optimal control problems. J. Guid. Control Dyn. 27, 397–405 (2004)

    Google Scholar 

  116. Roubos, J.A., van Straten, G., van Boxtel, A.J.: An evolutionary strategy for fed-batch bioreactor optimization: concepts and performance. J. Biotechnol. 67, 173–187 (1999)

    Google Scholar 

  117. Roxin, E.: The existence of optimal controls. Mich. Math. J. 9, 109–119 (1962)

    MATH  MathSciNet  Google Scholar 

  118. Sargent, R.W.H.: Optimal control. J. Comput. Appl. Math. 124, 361–371 (2000)

    MATH  MathSciNet  Google Scholar 

  119. Sarkar, D., Modak, J.M., Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Comput. Chem. Eng. 28, 789–798 (2004)

    Google Scholar 

  120. Seatzu, C., Corona, D., Giua, A., Bemporad, A.: Optimal control of continuous time switched affine systems. IEEE Trans. Autom. Control 51, 726–741 (2006)

    MathSciNet  Google Scholar 

  121. Seidman, T.I.: Optimal control of switching systems. In: Proceedings of the 21st Annual Conference on Information Science and Systems, Baltimore, pp. 485–489 (1987)

    Google Scholar 

  122. Shaikh, M.S., Caines, P.E.: On trajectory optimization for hybrid systems: Theory and algorithms for fixed schedules. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, pp. 1997–1998 (2002)

    Google Scholar 

  123. Shaikh, M.S., Caines, P.E.: Optimality zone algorithms for hybrid systems computation and control: from exponential to linear complexity. In: Proceedings of the 44th IEEE Conference on Decision and Control/European Control Conference, Seville, pp. 1403–1408 (2005)

    Google Scholar 

  124. Shen, B.Y., Liu, C.Y., Ye, J.X., Feng, E.M., Xiu, Z.L.: Parameter identification and optimization algorithm in microbial continuous culture. Appl. Math. Model. 36, 585–595 (2012)

    MATH  MathSciNet  Google Scholar 

  125. Shen, L.J., Feng, E.M., Wu, Q.D.: Impulsive control in microorganisms continuous fermentation. Int. J. Biomath. 5, 1250013, 9p (2012)

    Google Scholar 

  126. Sirisena, H.R., Chou, F.S.: State parameterization approach to the solution of optimal control problems. Optim. Control Appl. Methods 2, 289–298 (1981)

    MATH  MathSciNet  Google Scholar 

  127. Smets, I.Y.M., Versyck, K.J.E., Van Impe, J.F.M.: Optimal control theory: a generic tool for identification and control of (bio-)chemical reactors. Annu. Rev. Control 26, 57–73 (2002)

    Google Scholar 

  128. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)

    MATH  Google Scholar 

  129. Stoddart, A.W.J.: Existence of optimal controls. Pac. J. Math. 1, 167–177 (1967)

    MathSciNet  Google Scholar 

  130. Subchan, S., Żbikowski, R.: Computational Optimal Control Tools and Practice. Wiley, Chichester (2009)

    Google Scholar 

  131. Sun, Y., Qi, W., Teng, H., Xiu, Z., Zeng, A.: Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1, 3-propanediol across cell membrane. Biochem. Eng. J. 38, 22–32 (2008)

    Google Scholar 

  132. Sussmann, H.J.: A maximum principle for hybrid optimal control problems. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, pp. 425–430 (1999)

    Google Scholar 

  133. Takamatsu, T., Hashimoto, I., Shoiya, S., Mizuhara, K., Koike, T., Ohno, H.: Theory and practice of optimal control in continuous fermentation process. Automatica 11, 141–148 (1975)

    MATH  Google Scholar 

  134. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Essex (1991)

    MATH  Google Scholar 

  135. Teo, K.L., Wu, Z.S.: Computational Methods for Optimizing Distributed Systems. Academic, Orlando (1984)

    MATH  Google Scholar 

  136. Terwiesch, P., Agarwal, M., Rippin, D.W.T.: Batch unit optimization with imperfect modelling: a survey. J. Process Control 4, 238–258 (1994)

    Google Scholar 

  137. Upreti, S.R.: A new robust technique for optimal control of chemical engineering processes. Comput. Chem. Eng. 28, 1325–1336 (2004)

    Google Scholar 

  138. Van Impe, J.F., Bastin, G.: Optimal adaptive control of fed-batch fermentation processes. Control Eng. Pract. 3, 939–954 (1995)

    Google Scholar 

  139. Verriest, E.I.: Optimal control for switched point delay systems with refractory period. In: Proceedings of the 16th IFAC World Congress, Prague, July 2005

    Google Scholar 

  140. Verriest, E.I., Delmotte, F., Egerstedt, M.: Optimal impulsive control of point delay systems with refractory period. In: Proceedings of the 5th IFAC Workshop on Time Delay Systems, Leuven, Sept 2004

    Google Scholar 

  141. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    MATH  MathSciNet  Google Scholar 

  142. Wang, G., Feng, E.M., Xiu, Z.L.: Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification. Appl. Math. Comput. 188, 1151–1160 (2007)

    MATH  MathSciNet  Google Scholar 

  143. Wang, G., Feng, E.M., Xiu, Z.L.: Modelling and parameter identification of microbial biconversion in fed-batch cultures. J. Process Control 18, 458–464 (2008)

    Google Scholar 

  144. Wang, H.Y., Feng, E.M., Xiu, Z.L.: Optimality condition of the nonlinear impulsive system in fed-batch fermentation. Nonlinear Anal.: Theory Methods Appl. 68, 12–23 (2008)

    Google Scholar 

  145. Wang, J., Ye, J.X., Yin, H.C, Feng, E.M., Wang, L.: Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol. J. Comput. Appl. Math. 236, 2268–2276 (2012)

    MATH  MathSciNet  Google Scholar 

  146. Wang, L., Xiu, Z.L., Gong, Z.H., Feng, E.M.: Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture. Int. J. Biomath. 5, 1250034, 12p (2012)

    Google Scholar 

  147. Wardi, Y., Egerstedt, M.: Algorithm for optimal mode scheduling in switched systems. In: Proceedings of American Control Conference, Montreal, pp. 4546–4551 (2012)

    Google Scholar 

  148. Wei, S., Uthaichana, K., Zefran, M., DeCarlo, R.A., Bengea, S.: Applications of numerical optimal control to nonlinear hybrid systems. Nonlinear Anal.: Hybrid Syst. 1, 264–279 (2007)

    Google Scholar 

  149. Wicks, M., DeCarlo, R.: Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems. In: Proceedings of the American Control Conference, New Mexico, pp. 1709–1713 (1997)

    Google Scholar 

  150. Wicks, M.A., Pelelies, P., DeCarlo, R.A.: Switched controller synthesis for the quadratic stabilisation of a pair of unstable linear systems. Eur. J. Control 4, 140–147 (1998)

    MATH  Google Scholar 

  151. Witt, U., Muller, R.J., Augusta, J., Widdecke, H., Deckwer, W.D.: Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol. Chem. Phys. 195, 793–802 (1994)

    Google Scholar 

  152. Wu, C.Z., Teo, K.L., Li, R., Zhao, Y.: Optimal control of switched systems with time delay. Appl. Math. Lett. 19, 1062–1067 (2006)

    MATH  MathSciNet  Google Scholar 

  153. Xie, G.M., Wang, L.: Controllability and stabilizability of switched linear systems. Syst. Control Lett. 48, 135–155 (2003)

    MATH  MathSciNet  Google Scholar 

  154. Xiu, Z.L., Zeng, A.P., An, L.J.: Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol. J. Dalian Univ. Technol. 40, 428–433 (2000)

    Google Scholar 

  155. Xu, X.P., Antsaklis, P.J.: Switched systems optimal control formulation and a two stage optimization methodology. In: Proceedings of the 9th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia, June 2001

    Google Scholar 

  156. Xu, X.P., Antsaklis, P.J.: Optimal control of switched autonomous systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, pp. 4401–4406 (2002)

    Google Scholar 

  157. Xu, X.P., Antsaklis, P.J.: Results and perspectives on computational methods for optimal control of switched systems. In: Oded, M., Amir, P. (eds.) Hybrid Systems: Computation and Control, pp. 540–555. Springer, Berlin (2003)

    Google Scholar 

  158. Xu, X.P., Antsaklis, P.J.: Optimal control of switched systems based on parametrization of the switching instants. IEEE Trans. Autom. Control 49, 2–16 (2004)

    MathSciNet  Google Scholar 

  159. Yang, G., Tian, J., Li, J.. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl. Microbiol. Biotechnol. 73, 1017–1024 (2007)

    Google Scholar 

  160. Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE Trans. Autom. Control 43, 461–474 (1998)

    MATH  MathSciNet  Google Scholar 

  161. Ye, J.X., Zhang, Y.D., Feng, E.M., Xiu, Z.L., Yin, H.C.: Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and pH logic control. Appl. Math. Model. 36, 357–369 (2012)

    MATH  MathSciNet  Google Scholar 

  162. Yong, J.: Systems governed by ordinary differential equations with continuous, switching and impulse controls. Appl. Math. Optim. 20, 223–235 (1989)

    MATH  MathSciNet  Google Scholar 

  163. Zefran, M., Burdick, J.W.: Design of switching controllers for systems with changing dynamics. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, pp. 2113–2118 (1998)

    Google Scholar 

  164. Zeng, A.P.: A kinetic model for product formation of microbial and mammalian cells. Biotechnol. Bioeng. 46, 314–324 (1995)

    Google Scholar 

  165. Zeng, A.P., Biebl, H.: Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng./Biotechnol. 74, 239–259 (2002)

    Google Scholar 

  166. Zeng, A.P., Deckwer, W.D.: A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol. Prog. 11, 71–79 (1995)

    Google Scholar 

  167. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Deckwer, W.D.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911 (1994)

    Google Scholar 

  168. Zheng, P., Wereath, K., Sun, J., van den Heuvel, J., Zeng, A.P.: Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem. 41, 2160–2169 (2006)

    Google Scholar 

  169. Zheng, Z.M., Cheng, K.K., Hu, Q.L., Liu, H.J., Guo, N.N., Liu, D.: Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae. Biochem. Eng. J. 39, 305–310 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, C., Gong, Z. (2014). Introduction. In: Optimal Control of Switched Systems Arising in Fermentation Processes. Springer Optimization and Its Applications, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43793-3_1

Download citation

Publish with us

Policies and ethics