Variations of Conservative Backfilling to Improve Fairness

  • Avinab Rajbhandary
  • David P. BundeEmail author
  • Vitus J. Leung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8429)


We apply recent variations of Conservative backfilling in an effort to improve scheduler fairness. These variations modify the compression operation while preserving the key property that jobs never move later in the profile. We assess the variations using two measures of job-level fairness. Each of the variations turns out to be better than Conservative according to one of the metrics.


Schedule Algorithm Fair Share Priority Function Actual Processing Time Compression Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the anonymous referees for their helpful comments. A. Rajbhandary and D.P. Bunde were partially supported by contract 899808 from Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. We also thank all those who contributed traces to the Parallel Workloads Archive.


  1. 1.
    Avi-Itzhak, B., Levy, H., Raz, D.: Quantifying fairness in queuing systems: principles, approaches, and applicability. Probab. Eng. Inf. Sci. 22(4), 495–517 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Feitelson, D.: The parallel workloads archive.
  3. 3.
    Feitelson, D.: Personal communication (2013)Google Scholar
  4. 4.
    Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the Maui scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. 5.
    Klusáček, D., Rudová, H.: Performance and fairness for users in parallel job scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Leung, V.J., Sabin, G., Sadayappan, P.: Parallel job scheduling policies to improve fairness: a case study. In: Proceedings of the 6th International Workshop on Scheduling and Resource Management for Parallel and Distributed Systems (2010)Google Scholar
  7. 7.
    Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  8. 8.
    Lindsay, A.M., Galloway-Carson, M., Johnson, C.R., Bunde, D.P., Leung, V.J.: Backfilling with guarantees made as jobs arrive. Concur. Comput. Pract. Exp. 25(4), 513–523 (2013)CrossRefGoogle Scholar
  9. 9.
    Mann, L.: Queue culture: the waiting line as a social system. Am. J. Sociol. 75, 340–354 (1969)CrossRefGoogle Scholar
  10. 10.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6), 529–543 (2001)CrossRefGoogle Scholar
  11. 11.
    Perković, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch schedulers. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (2000)Google Scholar
  12. 12.
    Rajbhandary, A.: Fairness in scheduling algorithms. Honors thesis, Knox College (2013)Google Scholar
  13. 13.
    Raz, D., Avi-Itzhak, B., Levy, H.: Fairness considerations in multi-server and multi-queue systems. In: Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools (2006)Google Scholar
  14. 14.
    Sabin, G., Kochhar, G., Sadayappan, G.: Job fairness in non-preeemptive job scheduling. In: Proceedings of the International Conference on Parallel Processing (ICPP) (2004)Google Scholar
  15. 15.
    Sabin, G., Sadayappan, P.: Unfairness metrics for space-sharing parallel job schedulers. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 238–256. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  16. 16.
    Schwiegelshohn, U., Yahyapour, R.: Fairness in parallel job scheduling. J. Sched. 3, 297–320 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  18. 18.
    Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reservation strategies for backfill job scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Stoica, I., Abdel-Wahab, H., Pothen, A.: A microeconomic scheduler for parallel computers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 200–218. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  20. 20.
    Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: solving the mystery of why increased inaccuracy may help. In: Proceedings of the IEEE International Symposium on Workload Characterization, pp. 131–141 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Avinab Rajbhandary
    • 1
  • David P. Bunde
    • 1
    Email author
  • Vitus J. Leung
    • 2
  1. 1.Knox CollegeGalesburgUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations