Towards Process-Aware Cross-Organizational Human Resource Management

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 175)


Finding human resources with the required set of skills, experience, and availability to execute an activity at a specific moment, is a socio-technical challenge for enterprises that use business-process aware systems. On an intra-organizational level, there exists an increasing body of knowledge for automated human-resource management. However, the recent pervasiveness of service-oriented cloud computing combined with mobile devices and big data, has resulted in the emergence of crossorganizational ecosystems in which workforce is distributed. Consequently, human-resource management has to consider more requirements compared to a purely intra-organizational setting. This position paper addresses the gap and describes a set of challenges in the management of human resources in service outsourcing scenarios based on process views and automatic process-view matching. The contribution is a specification of research directions that must be pursued so that resource management successfully adopts the special requirements for scaling to a cross-organizational level.


human resource management process matching process view resource allocation resource assignment service outsourcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehandjiev, N., Grefen, P. (eds.): Dynamic Business Process Formation for Instant Virtual Enterprises. Springer (2010)Google Scholar
  2. 2.
    Pimentel, F.D.P.E., Zavattaro, G.: Service-oriented and cloud computing (2012)Google Scholar
  3. 3.
    Chou, S.-W., Chiang, C.-H.: Understanding the formation of software-as-a-service (saas) satisfaction from the perspective of service quality. Decision Support Systems (2013)Google Scholar
  4. 4.
    Eshuis, R., Norta, A., Kopp, O., Pitkänen, E.: Service Outsourcing with Process Views. IEEE Transactions on Services Computing 99 (2013)Google Scholar
  5. 5.
    Norta, A., Eshuis, R.: Specification and verification of harmonized business-process collaborations. Information Systems Frontiers 12, 457–479 (2010)CrossRefGoogle Scholar
  6. 6.
    Norta, A., Kutvonen, L.: A Cloud HUB for Brokering Business Processes as a Service: A Rendezvous Platform that Supports Semi-automated Background Checked Partner Discovery for Cross-Enterprise Collaboration. In: 2012 Annual SRII Global Conference (SRII), pp. 293–302 (2012)Google Scholar
  7. 7.
    Straub, D., Weill, P., Schwaig, K.S.: Strategic Dependence on the IT Resource and Outsourcing: A Test of the Strategic Control Model. Information Systems Frontiers 10(2), 195–210 (2008)CrossRefGoogle Scholar
  8. 8.
    Strembeck, M., Mendling, J.: Modeling process-related RBAC models with extended UML activity models. Inf. Softw. Technol. 53, 456–483 (2011)CrossRefGoogle Scholar
  9. 9.
    OMG, BPMN 2.0, recommendation, OMG (2011)Google Scholar
  10. 10.
    Ebert, J., Engels, G.: Observable or invocable behaviour - you have to choose! Technical report 94-38, Leiden University (1994)Google Scholar
  11. 11.
    Preuner, G., Schrefl, M.: Requester-centered composition of business processes from internal and external services. Data Knowl. Eng. 52(1), 121–155 (2005)CrossRefGoogle Scholar
  12. 12.
    American National Standards Institute, Inc., Role-Based Access Control. ANSI INCITS 359-2004 (February 2004),
  13. 13.
    Grefen, P., Ludwig, H., Dan, A., Angelov, S.: An analysis of web services support for dynamic business process outsourcing. Information and Software Technology 48(11), 1115–1134 (2006)CrossRefGoogle Scholar
  14. 14.
    Norta, A.: Exploring Dynamic Inter-Organizational Business Process Collaboration. PhD thesis, Technology University Eindhoven, Department of Information Systems (2007)Google Scholar
  15. 15.
    Brown, M.: Privacy and Outsourcing: Evolving Concerns. Newsletter (May 2007)Google Scholar
  16. 16.
    Web Services-Human Task (WS-HumanTask) v1.1, tech. rep., OASIS (2010)Google Scholar
  17. 17.
    WS-BPEL Extension for People (BPEL4People), tech. rep., OASIS (2009)Google Scholar
  18. 18.
    Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: RAL: A High-Level User-Oriented Resource Assignment Language for Business Processes. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 50–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Website, The RASCI matrix (last accessed in January 2014),
  20. 20.
    van der Aalst, W.M.P., ter Hofsted, A.H.M.: YAWL: Yet Another Workflow Language. Inf. Syst. 30(4), 245–275 (2005)CrossRefGoogle Scholar
  21. 21.
    ARIS, RACI, ARIS Community Website (2012),
  22. 22.
    Casati, F., Castano, S., Fugini, M.: Managing Workflow Authorization Constraints through Active Database Technology. Information Systems Frontiers 3, 319–338 (2001)CrossRefGoogle Scholar
  23. 23.
    Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Designing Business Processes with History-Aware Resource Assignments. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 101–112. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artif. Intell. 175(7-8), 1037–1052 (2011)CrossRefGoogle Scholar
  25. 25.
    Fishburn, P.C.: Utility theory for decision making. Wiley (1970)Google Scholar
  26. 26.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge Univ. Press (1993)Google Scholar
  27. 27.
    Agrawal, R., Wimmers, E.L.: A Framework for Expressing and Combining Preferences. In: SIGMOD Conference, pp. 297–306. ACM (2000)Google Scholar
  28. 28.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Software Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  29. 29.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)Google Scholar
  30. 30.
    Kießling, W.: Foundations of Preferences in Database Systems. In: VLDB, pp. 311–322. VLDB Endowment (2002)Google Scholar
  31. 31.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)CrossRefGoogle Scholar
  32. 32.
    García, J.M., Ruiz, D., Ruiz-Cortés, A.: A Model of User Preferences for Semantic Services Discovery and Ranking. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Cabanillas, C., García, J.M., Resinas, M., Ruiz, D., Mendling, J., Ruiz-Cortés, A.: Priority-Based Human Resource Allocation in Business Processes. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 374–388. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Sahinalp, S., Tasan, M., Macker, J., Ozsoyoglu, Z.: Distance based indexing for string proximity search. In: Proceedings of the 19th International Conference on Data Engineering, pp. 125–136 (March 2003)Google Scholar
  35. 35.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: International Conference on Machine Learning, ICML 1998, pp. 296–304. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  36. 36.
    Fellbaum, C.: WordNet. Blackwell Publishing Ltd. (2012)Google Scholar
  37. 37.
    Navigli, R., Ponzetto, S.P.: BabelNet: Building a Very Large Multilingual Semantic Network. In: Annual Meeting of the Association for Computational Linguistics, ACL 2010, pp. 216–225 (2010)Google Scholar
  38. 38.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process Model Generation from Natural Language Text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Leopold, H., Mendling, J., Reijers, H.A., Rosa, M.L.: Simplifying process model abstraction: Techniques for generating model names. Inf. Syst. 39, 134–151 (2014)CrossRefGoogle Scholar
  40. 40.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  41. 41.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspondences Between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  43. 43.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic Optimization of Semantic Process Model Matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  44. 44.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing Recall of Process Model Matching by Improved Activity Label Matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  45. 45.
    Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Predicting the Quality of Process Model Matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 203–210. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Vienna University of Economics and BusinessAustria
  2. 2.Tallinn University of TechnologyEstonia
  3. 3.University of SevilleSpain

Personalised recommendations