Skip to main content

Formal Semantics in Modern Type Theories: Is It Model-Theoretic, Proof-Theoretic, or Both?

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8535)

Abstract

In this talk, we contend that, for NLs, the divide between model-theoretic semantics and proof-theoretic semantics has not been well-understood. In particular, the formal semantics based on modern type theories (MTTs) may be seen as both model-theoretic and proof-theoretic. To be more precise, it may be seen both ways in the sense that the NL semantics can first be represented in an MTT in a model-theoretic way and then the semantic representations can be understood inferentially in a proof-theoretic way. Considered in this way, MTTs arguably have unique advantages when employed for formal semantics.

Keywords

  • Type Theory
  • Formal Semantic
  • Proof Assistant
  • Type Constructor
  • Meaning Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-43742-1_14
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-43742-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher, N.: Lexical Meaning in Context: a Web of Words. Cambridge University Press (2012)

    Google Scholar 

  2. Asher, N., Luo, Z.: Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17, Paris (2012)

    Google Scholar 

  3. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press (1983)

    Google Scholar 

  4. Brandom, R.: Making It Explicit: Reasoning, Representing, and Discursive Commitment. Harvard University Press (1994)

    Google Scholar 

  5. Brandom, R.: Articulating Reasons: an Introduction to Inferentialism. Harvard University Press (2000)

    Google Scholar 

  6. Chatzikyriakidis, S.: Adverbs in a modern type theory. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 44–56. Springer, Heidelberg (2014)

    Google Scholar 

  7. Chatzikyriakidis, S., Luo, Z.: An account of natural language coordination in type theory with coercive subtyping. In: Duchier, D., Parmentier, Y. (eds.) CSLP 2012. LNCS, vol. 8114, pp. 31–51. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  8. Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In: Morrill, G., Nederhof, M.-J. (eds.) Formal Grammar 2012 and 2013. LNCS, vol. 8036, pp. 159–174. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  9. Chatzikyriakidis, S., Luo, Z.: Natural language reasoning using proof-assistant technology: Rich typing and beyond. In: EACL Workshop on Type Theory and Natural Language Semantics, Goteborg (2014)

    Google Scholar 

  10. The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.1), INRIA (2007)

    Google Scholar 

  11. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2/3) (1988)

    Google Scholar 

  12. Dummett, M.: The Logical Basis of Metaphysics. Duckworth (1991)

    Google Scholar 

  13. Francez, N., Dyckhoff, R.: Proof-theoretic semantics for a natural language fragment. Linguistics and Philosophy 33(6) (2011)

    Google Scholar 

  14. Francez, N., Dyckhoff, R., Ben-Avi, G.: Proof-theoretic semantics for subsentential phrases. Studia Logica 94 (2010)

    Google Scholar 

  15. Gentzen, G.: Untersuchungen über das logische schliessen. Mathematische Zeitschrift 39 (1934)

    Google Scholar 

  16. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Kahle, R., Schroeder-Heister, P. (eds.): Proof-Theoretic Semantics. Special Issue of Synthese 148(3) (2006)

    Google Scholar 

  18. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press (1994)

    Google Scholar 

  19. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Luo, Z.: Manifest fields and module mechanisms in intensional type theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 237–255. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  21. Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  22. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Linguistics and Philosophy 35(6), 491–513 (2012)

    CrossRef  Google Scholar 

  23. Luo, Z., Part, F.: Subtyping in type theory: Coercion contexts and local coercions (extended abstract). In: TYPES 2013, Toulouse (2013)

    Google Scholar 

  24. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Information and Computation 223, 18–42 (2012)

    CrossRef  MathSciNet  Google Scholar 

  25. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

    Google Scholar 

  26. Martin-Löf, P.: On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic 1(1) (1996)

    Google Scholar 

  27. Montague, R.: Formal Philosophy. Yale University Press (1974); Collected papers Thomason, R (ed.)

    Google Scholar 

  28. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory: An Introduction. Oxford University Press (1990)

    Google Scholar 

  29. Prawitz, D.: Towards a foundation of a general proof theory. In: Suppes, P., et al. (eds.) Logic, Methodology, and Phylosophy of Science IV (1973)

    Google Scholar 

  30. Prawitz, D.: On the idea of a general proof theory. Synthese 27 (1974)

    Google Scholar 

  31. Pustejovsky, J.: The Generative Lexicon. MIT Press (1995)

    Google Scholar 

  32. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)

    Google Scholar 

  33. Saeed, J.: Semantics. Wiley-Blackwell (1997)

    Google Scholar 

  34. Severi, P., Poll, E.: Pure type systems with definitions. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 316–328. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, Z. (2014). Formal Semantics in Modern Type Theories: Is It Model-Theoretic, Proof-Theoretic, or Both?. In: Asher, N., Soloviev, S. (eds) Logical Aspects of Computational Linguistics. LACL 2014. Lecture Notes in Computer Science, vol 8535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43742-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43742-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43741-4

  • Online ISBN: 978-3-662-43742-1

  • eBook Packages: Computer ScienceComputer Science (R0)