Skip to main content

Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

  • Chapter
  • First Online:
Field-Coupled Nanocomputing

Abstract

We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, B.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  2. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  3. Orlov, A.O., Kummamuru, R., Timler, J., Lent, C.S., Snider, G.L., Bernstein, G.H.: Experimental Studies of Quantum Dot Cellular Automata Devices. Research Signpost, Trivandrum (2004)

    Google Scholar 

  4. Yadavalli, K.K., Orlov, A.O., Timler, J.P., Lent, C.S., Snider, G.L.: Fanout gate in quantum-dot cellular automata. Nanotechnology 18(37), 375401 (2007)

    Article  Google Scholar 

  5. Tang, Y., Orlov, A.O., Snider, G.L., Fay, P.J.: Towards real-time testing of clocked quantum dot cellular automata. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 76–79. IEEE (2009)

    Google Scholar 

  6. Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09. IEEE, pp. 46–49. IEEE (2009)

    Google Scholar 

  7. Foley, E.T., Kam, A.F., Lyding, J.W., Avouris, P.: Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100). Phys. Rev. Lett. 80(6), 1336 (1998)

    Article  Google Scholar 

  8. Shen, T.-C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, P., Walkup, R.E.: Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995)

    Article  Google Scholar 

  9. Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B.Y.-K., Perez-Murano, F., Grey, F.: STM-induced hydrogen desorption via a hole resonance. Phys. Rev. Lett. 80(12), 2618 (1998)

    Article  Google Scholar 

  10. Soukiassian, L., Mayne, A., Carbone, M., Dujardin, G.: Atomic-scale desorption of H atoms from the Si(100)-\(2 \times 1\): H surface: inelastic electron interactions. Phys. Rev. B 68(3), 035303 (2003)

    Article  Google Scholar 

  11. Kuramochi, H., Uchida, H., Kuwahara, Y., Watanabe, K., Aono, M.: Site-independent adsorption of hydrogen atoms deposited from a scanning tunneling microscope tip onto a Si(111)-\(7 \times 7\) surface. Jpn. J. Appl. Phys. 36(10A), L1343–L1346 (1997)

    Article  Google Scholar 

  12. Pitters, J.L., Livadaru, L., Haider, M.B., Wolkow, R.A.: Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134(6), 064712 (2011)

    Article  Google Scholar 

  13. Tong, X., Wolkow, R.A.: Electron-induced H atom desorption patterns created with a scanning tunneling microscope: implications for controlled atomic-scale patterning on H:Si(100). Surf. Sci. 600(16), L199–L203 (2006)

    Article  Google Scholar 

  14. Haider, M., Pitters, J.L., DiLabio, G., Livadaru, L., Mutus, J., Wolkow, R.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102(4), 046805 (2009)

    Article  Google Scholar 

  15. Livadaru, L., Pitters, J.L., Taucer, M., Wolkow, R.A.: Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a hydrogenated silicon surface. Phys. Rev. B 84(20), 205416 (2011)

    Article  Google Scholar 

  16. Taucer, M., Livadaru, L., Piva, P.G., Achal, R., Labidi, H., Pitters, J.L., Wolkow, R.A.: Single electron charging dynamics of atomic silicon quantum dots on the H-Si(100) surface. arXiv:1305.3597

  17. Oura, K., Lifshits, V.G., Saranin, A.A., Zotov, A.V., Katayama, M.: Hydrogen interaction with clean and modified silicon surfaces. Surf. Sci. Rep. 35, 1–69 (1999)

    Article  Google Scholar 

  18. Lopinski, G.P., Wayner, D.D.M., Wolkow, R.A.: Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000)

    Article  Google Scholar 

  19. Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435(7042), 658–661 (2005)

    Article  Google Scholar 

  20. Piva, P.G., DiLabio, G.A., Pitters, J.L., Wolkow, R.A.: Electrostatically regulated atomic scale electroconductivity device

    Google Scholar 

  21. Shockley, W., et al.: Electrons and Holes in Semiconductors, vol. 1. van Nostrand, New York (1963)

    Google Scholar 

  22. Baseer Haider, M., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots. arXiv:0807.0609

  23. Livadaru, L., Xue, P., Shaterzadeh-Yazdi, Z., DiLabio, G.A., Mutus, J., Pitters, J.L., Sanders, B.C., Wolkow, R.A.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12(8), 083018 (2010)

    Article  Google Scholar 

  24. Shaterzadeh-Yazdi, Z., Livadaru, L., Taucer, M., Mutus, J., Pitters, J.L., Wolkow, R.A., Sanders, B.C.: On measuring coherence in coupled dangling-bond dynamics (2013). arXiv:1305.6359

  25. Piva, P.G., Wolkow, R.A., Kirczenow, G.: Nonlocal conductance modulation by molecules: scanning tunneling microscopy of substituted styrene heterostructures on H-terminated Si(100). Phys. Rev. Lett. 101(10), 106801 (2008)

    Article  Google Scholar 

  26. Kirczenow, G., Piva, P.G., Wolkow, R.A.: Modulation of electrical conduction through individual molecules on silicon by the electrostatic fields of nearby polar molecules: theory and experiment. Phys. Rev. B 80(3), 035309 (2009)

    Article  Google Scholar 

  27. Tong, X., Wolkow, R.A.: Scanning tunneling microscopy characterization of low-profile crystalline \({\rm TiSi}_{2}\) microelectrodes on a Si(111) surface. Appl. Phys. Lett. 86(20), 203101 (2005)

    Article  Google Scholar 

  28. Palermo, V., Buchanan, M., Bezinger, A., Wolkow, R.A.: Lateral diffusion of titanium disilicide as a route to contacting hybrid Si/organic nanostructures. Appl. Phys. Lett. 81(19), 3636 (2002)

    Article  Google Scholar 

  29. Pitters, J.L., Dogel, I.A., Wolkow, R.A.: Charge control of surface dangling bonds using nanoscale Schottky contacts. ACS Nano 5(3), 1984–1989 (2011)

    Article  Google Scholar 

  30. Zikovsky, J., Salomons, M.H., Dogel, S.A., Wolkow, R.A.: Silicon surface conductance investigated using a multiple-probe scanning tunneling microscope. In: Joachim, C. (ed.) Atomic Scale Interconnection Machines: Proceedings of the 1st AtMol European Workshop Singapore 28th–29th June 2011. Advances in Atom and Single Molecule Machines, vol. 1, pp. 167–180. Springer, Berlin (2012). ISBN 978-3-642-28171-6

    Google Scholar 

  31. Martins, B.V.C., Smeu, M., Guo, H., Wolkow, R.A.: Conductivity of Si(111)-\(7 \times 7\): the role of a single atomic step. arXiv:1310.1313

  32. Martins, B.V.C., Wolkow, R.A.: (2013, in preparation)

    Google Scholar 

  33. Lyding, J.W., Shen, T.C., Hubacek, J.R., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-\(2\times 1\) surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994)

    Article  Google Scholar 

  34. Raza, H.: Theoretical study of isolated dangling bonds, dangling bond wires, and dangling bond clusters on a H:Si(001)-(\(2 \times 1\)) surface. Phys. Rev. B 76(4), 045308 (2007)

    Article  Google Scholar 

  35. Ye, W., Min, K., Martin, P.P., Rockett, A.A., Aluru, N.R., Lyding, J.W.: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-\(2 \times 1\): H surface. Surf. Sci. 609, 147–151 (2013)

    Article  Google Scholar 

  36. Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013)

    Article  Google Scholar 

  37. Jahromi, S.A.Z., Salomons, M., Sun, Q., Wolkow, R.A.: Prediction of the resonant frequency of piezoelectric tube scanners through three-dimensional finite element modeling of a tube assembly. Rev. Sci. Instrum. 79(7), 3 (2008)

    Google Scholar 

  38. Randall, J.N., Von Ehr, J.R., Ballard, J.B., Owen, J.H.G., Fuchs, E.: Automated Scanning Tunneling Microscope image analysis of Si(100): H \(2 \times 1\) surfaces. Microelectron. Eng. 98, 214–217 (2012)

    Article  Google Scholar 

  39. Hänninen, I., Takala, J.: Arithmetic design on quantum-dot cellular automata nanotechnology. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 43–52. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  Google Scholar 

  41. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)

    Article  Google Scholar 

  42. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: Spectroscopy of a deterministic single-donor device in silicon. Proc. SPIE 8400, 840006 (2012)

    Article  Google Scholar 

  43. Tan, K.Y., Chan, K.W., Mottonen, M., Morello, A., Yang, C., van Donkelaar, J., Alves, A., Pirkkalainen, J.M., Jamieson, D.N., Clark, R.G., Dzurak, A.S.: Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10(1), 11–15 (2010)

    Article  Google Scholar 

  44. Kane, B.E.: Can we build a large-scale quantum computer using semiconductor materials? MRS Bull. 30, 105–110 (2005)

    Article  Google Scholar 

  45. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)

    Article  Google Scholar 

  46. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Wolkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolkow, R.A. et al. (2014). Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics