Skip to main content

Understanding a Bisferrocene Molecular QCA Wire

  • Chapter
  • First Online:
Field-Coupled Nanocomputing

Abstract

Molecular QCA are considered among the most promising beyond CMOS devices. Frequency as well as self-assembly characteristics are the features that make them most attractive. Several challenges restrain them for being exploited from a practical point of view in the near future, not only for the difficulties at the technological level, but for the inappropriateness of the tools used when studying and predicting their behavior.

In this chapter we describe our methodology to simulate and model sequences of bisferrocene molecules aimed at understanding the behavior of a realistic MQCA wire. The simulations consider as variables distances between successive molecules, as well as different electric field applied (in terms of input and of clock). The method can be used to simulate and model also other more complex structures, and perspectives are given on the exploitation of the achieved results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  2. Vankamamidi, V., Ottavi, M., Lombardi, F.: Clocking and cell placement for QCA. In: IEEE-NANO 2006, vol. 1, pp. 343–346 (2006)

    Google Scholar 

  3. Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL Snake-Clock based magnetic QCA architecture. IEEE Trans. Nanatechnol. 10(5), 1141–1149 (2011)

    Article  Google Scholar 

  4. Graziano, M., Chiolerio, A., Zamboni, M.: A technology aware magnetic QCA NCL-HDL architecture. In: 9th IEEE Conference on Nanotechnology, 2009, IEEE-NANO 2009, Genova, Italy, pp. 763–766. IEEE (2009)

    Google Scholar 

  5. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19, 1752–1755 (2001)

    Article  Google Scholar 

  6. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50, 1890–1896 (2003)

    Article  Google Scholar 

  7. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  8. Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125, 15250–15259 (2003)

    Article  Google Scholar 

  9. Jiao, J., Long, G.J., Rebbouh, L., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Properties of a mixed-valence (Fe-II)(2)(Fe-III)(2) square cell for utilization in the quantum cellular automata paradigm for molecular electronics. J. Am. Chem. Soc. 127, 17819–17831 (2005)

    Article  Google Scholar 

  10. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)

    Article  Google Scholar 

  11. Lu, Y., Liu, M., Lent, C.S.: Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102, 034311–034317 (2007)

    Article  Google Scholar 

  12. Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)

    Article  Google Scholar 

  13. Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)

    Article  Google Scholar 

  14. Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: Elixir or Poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)

    Article  Google Scholar 

  15. Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerging Tech. Comp. Syst. 7(4), 15:1–15:18 (2011)

    Google Scholar 

  16. Lu, Y., Lent, C.S.: Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions. Phys. Chem. Chem. Phys. 13, 14928–14936 (2011)

    Article  Google Scholar 

  17. Wang, X., Ma, J.: Electron switch in the double-cage fluorinated fullerene anions: new candidates for molecular quantum-dot cellular automata. Phys. Chem. Chem. Phys. 2011(13), 16134–16137 (2011)

    Article  Google Scholar 

  18. Zoli, L.: Active bis-ferrocene molecules as unit for molecular computation. Ph.D. dissertation (2010)

    Google Scholar 

  19. Arima, V., Iurlo, M., Zoli, L., Kumar, S., Piacenza, M., Della Sala, F., Matino, F., Maruccio, G., Rinaldi, R., Paolucci, F., Marcaccio, M., Cozzi, P.G., Bramanti, A.P.: Toward quantum-dot cellular automata units. Nanoscale 4, 813–823 (2012)

    Article  Google Scholar 

  20. Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., Piccinini, G.: Molecular QCA: a write-in system based on electric fields. In: IEEE Nanoelectronics Conference (INEC), June 2011 (2011)

    Google Scholar 

  21. Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012). (Elsevier)

    Article  Google Scholar 

  22. Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE NANO2012 12th International Conference on Nanotechnology, Birmingham (UK), 20–23 August 2012 (2012)

    Google Scholar 

  23. Pulimeno, A., Graziano, M., Sanginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12, 498–507 (2013)

    Article  Google Scholar 

  24. Wang, X., Chen, S., Wen, J., Ma, J.: Exploring the possibility of noncovalently surface bound molecular quantum-dot cellular automata: theoretical simulations of deposition of double-cage fluorinated fullerenes on Ag(100) surface. J. Phys. Chem. C 117, 1308–1314 (2012)

    Article  Google Scholar 

  25. Lu, Y., Quardokus, R., Lent, C.S., Justaud, F., Lapinte, C., Kandel, A.: Charge localization in isolated mixed-valence complexes: an STM and theoretical study. J. Am. Chem. Soc. 132, 13519–13524 (2010)

    Article  Google Scholar 

  26. Quardokus, R., Lu, Y., Wasio, N.A., Lent, C.S., Justaud, F., Lapinte, C., Kandel, S.A.: Through-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale. J. Am. Chem. Soc. 134, 1710–1714 (2012)

    Article  Google Scholar 

  27. Singh, U.C., Kollman, P.A.: An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariagrazia Graziano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pulimeno, A., Graziano, M., Antidormi, A., Wang, R., Zahir, A., Piccinini, G. (2014). Understanding a Bisferrocene Molecular QCA Wire. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics