Path Planning for Swarms by Combining Probabilistic Roadmaps and Potential Fields

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8069)

Abstract

This paper combines probabilistic roadmaps with potential fields in order to enable a robotic swarm to effectively move to a desired destination while avoiding collisions with obstacles and each other. Potential fields provide the robots with local, reactive, behaviors that seek to keep the swarm moving in cohesion and away from the obstacles. The probabilistic roadmap provides global path planning which guides the swarm through a series of intermediate goals in order to effectively reach the desired destination. Random walks in combination with adjustments to the potential fields and intermediate goals are used to help stuck robots escape local minima. Experimental results provide promising validation on the efficiency and scalability of the proposed approach. Source code is made publicly available.

References

  1. 1.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 25–34 (1987)CrossRefGoogle Scholar
  2. 2.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2012)CrossRefGoogle Scholar
  4. 4.
    Reif, J.: Complexity of the mover’s problem and generalizations. In: IEEE Symposium on Foundations of Computer Science, pp. 421–427 (1979)Google Scholar
  5. 5.
    Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA (1988)Google Scholar
  6. 6.
    Schwartz, J.T., Sharir, M.: A survey of motion planning and related geometric algorithms. Artif. Intell. 37, 157–169 (1988)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Khatib, O.: Real time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–99 (1986)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. Robot. Auton. Syst. 27(3), 171–194 (1999)CrossRefGoogle Scholar
  9. 9.
    Spears, W.M., Spears, D.F.: Physicomimetics: Physics-Based Swarm Intelligence. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Tanner, H.G., Kumar, A.: Formation stabilization of multiple agents using decentralized navigation functions. In: Robotics: Science and Systems, pp. 49–56 (2005)Google Scholar
  11. 11.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8, 501–518 (1992)CrossRefGoogle Scholar
  12. 12.
    Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  13. 13.
    Denny, J., Amato, N.M.: Toggle PRM: a coordinated mapping of C-free and C-obstacle in arbitrary dimension. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, pp. 297–312. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Yeh, H.Y., Thomas, S., Eppstein, D., Amato, N.M.: UOBPRM: A uniformly distributed obstacle-based PRM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2655–2662 (2012)Google Scholar
  15. 15.
    Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of trees for parallel motion planning. IEEE Trans. Robot. 21(4), 587–608 (2005)CrossRefGoogle Scholar
  16. 16.
    Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., Reif, J.: Narrow passage sampling for probabilistic roadmap planners. IEEE Trans. Robot. 21(6), 1105–1115 (2005)Google Scholar
  17. 17.
    Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: IEEE International Conference on Robotics and Automation, pp. 1018–1023 (1999)Google Scholar
  18. 18.
    Pan, J., Chitta, S., Manocha, D.: Faster sample-based motion planning using instance-based learning. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol. 86, pp. 381–396. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Aarno, D., Kragic, D., Christensen, H.I.: Artificial potential biased probabilistic roadmap method. In: IEEE International Conference on Robotics and Automation, pp. 461–466 (2004)Google Scholar
  20. 20.
    Katz, R., Hutchinson, S.: Efficiently biasing PRMS with passage potentials. In: IEEE International Conference on Robotics and Automation, pp. 889–894 (2006)Google Scholar
  21. 21.
    Bayazıt, O.B., Lien, J.-M., Amato, N.M.: Swarming behavior using probabilistic roadmap techniques. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 112–125. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  22. 22.
    Bayazıt, O.B., Lien, J.M., Amato, N.M.: Better group behaviors using rule-based roadmaps. In: International Workshop on Algorithmic Foundations of Robotics, pp. 95–112 (2004)Google Scholar
  23. 23.
    Harrison, J.F., Vo, C., Lien, J.-M.: Scalable and robust shepherding via deformable shapes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 218–229. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  24. 24.
    Krontiris, A., Louis, S., Bekris, K.E.: Multi-level formation roadmaps for collision-free dynamic shape changes with non-holonomic teams. In: IEEE International Conference on Robotics and Automation (2012)Google Scholar
  25. 25.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)Google Scholar
  26. 26.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, MA (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Wallar, A., Plaku, E.: Source code for CRoPS: combined roadmaps and potentials for swarm path planning (2013). http://aw204.host.cs.st-andrews.ac.uk/CRoPS/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of St AndrewsFifeScotland, UK
  2. 2.Department of Electrical Engineering and Computer ScienceCatholic University of AmericaWashingtonUSA

Personalised recommendations