Skip to main content

Rapid In-vitro Testing for Chemotherapy Sensitivity in Leukaemia Patients

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 145))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP:

Alkaline phosphatase

AML:

Acute myeloid leukemia

ara-C:

Cytarabine, cytosine arabinoside

ara-CMP:

Cytosine arabinoside monophosphate

ara-CTP:

Cytosine arabinoside triphosphate

cdd:

Cytidine deaminase

CLA:

Cladarabine/cytarabine

DNR:

Daunorubicin

dCK:

Deoxycytidine kinase

FLA:

Fludarabine/cytarabine

hENT1:

Human equilibrative nucleoside transporter

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

NPM1:

Nucleophosmin-1 gene

pyrE :

Orotate phospho-ribosyltransferase gene

References

  1. Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW, Williams P, Stewart GS (1998) Engineering the luxCDABE genes from P. luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163(2):193–202

    Article  CAS  Google Scholar 

  2. Salisbury V et al (1999) Use of a clinical Escherichia coli isolate expressing lux genes to study the antimicrobial pharmacodynamics of moxifloxacin. J Antimicrob Chemother 43:829–832

    Article  CAS  Google Scholar 

  3. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    CAS  Google Scholar 

  4. Beard SJ, Salisbury V, Lewis RJ, Sharpe JA, MacGowan AP (2002) Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 46:538–542

    Article  CAS  Google Scholar 

  5. Qazi SN, Harrison SE, Self T, Williams P, Hill PJ (2004) Real-time monitoring of intracellular Staphylococcus aureus replication. J Bacteriol 186(4):1065–1077

    Article  CAS  Google Scholar 

  6. Robinson GM, Tonks KM, Thorn RM, Reynolds DM (2011) Application of bacterial bioluminescence to assess the efficacy of fast-acting biocides. Antimicrob Agents Chemother 55:5214–5220

    Article  CAS  Google Scholar 

  7. Bourgois JJ, Sluse FE, Baguet F, Mallefet J (2001) Kinetics of light emission and oxygen consumption by bioluminescentbacteria. J Bioenerg Biomembr 33:353–363

    Article  CAS  Google Scholar 

  8. Luker KE, Luker GD (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res 78(3):179–187

    Article  CAS  Google Scholar 

  9. Andreu N, Zelmer A, Wiles S (2011) Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 35(2):360–394

    Google Scholar 

  10. Lacharme-Lora L, Perkins SE, Humphrey TJ, Hudson PJ, Salisbury V (2009) Use of bioluminescent bacterial biosensors to investigate the role of free-living helminths as reservoirs and vectors of Salmonella. Environ Microbiol Rep 1(3):198–207

    Google Scholar 

  11. MacKenzie FM, Gould IM (1993) The post-antibiotic effect. J Antimicrob Chemother 32:519–537

    Article  CAS  Google Scholar 

  12. Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, LeTourneau DL, McMillian CL, Contag PR, Jenkins DE, Parr TR Jr (2001) Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 45(1):129–137

    Article  CAS  Google Scholar 

  13. Alloush HM, Salisbury V, Lewis RJ, MacGowan AP (2003) Pharmacodynamics of linezolid in a clinical isolate of Streptococcus pneumoniae genetically modified to express lux genes. J Antimicrob Chemother 52:511–513

    Article  CAS  Google Scholar 

  14. Marques CN, Salisbury VC, Greenman J, Bowker KE, Nelson SM (2005) Discrepancy between viable counts and light output as viability measurements, following ciprofloxacin challenge of self-bioluminescent Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 56:665–671

    Article  CAS  Google Scholar 

  15. Thorn RM, Nelson SM, Greenman J (2007) Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob Agents Chemother 51:3217–3224

    Article  CAS  Google Scholar 

  16. Hancock JT, Salisbury V, Ovejero-Boglione MC, Cherry R, Hoare C, Eisenthal R, Harrison R (2002) Antimicrobial properties of milk: dependence on presence of xanthine oxidase and nitrite. Antimicrob Agents Chemother 46(10):3308–3310

    Article  CAS  Google Scholar 

  17. Dhir VK, Dodd CER (1995) Susceptibility of suspended and surface-attached Salmonella enteritidis to biocides and elevated temperatures. Appl Environ Microbiol 61:1731–1738

    CAS  Google Scholar 

  18. Choi S, Gu M (1999) A whole cell bioluminescent biosensor for the detection of membrane-damaging toxicity. Biotechnol Bioprocess Eng 4:59–62

    Article  CAS  Google Scholar 

  19. Hope KJ, Jin L, Dick JE (2003) Human acute myeloid leukemia stem cells. Arch Med Res 34:507–517

    Article  CAS  Google Scholar 

  20. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333

    CAS  Google Scholar 

  21. Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335

    Google Scholar 

  22. Gale RE, Green C, Allen C et al (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776

    Google Scholar 

  23. Hiddemann W, Buchner T (2001) Current status and perspectives of therapies for acute myeloid leukaemia. Semin Hematol 38:3–9

    Article  CAS  Google Scholar 

  24. Amarante-Mendes GP, Kim CN, Liu L, Huang Y, Perkins CL, Green DR et al (1998) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 91:1700–1705

    CAS  Google Scholar 

  25. Carter BZ, Kornblau SM, Tsao T, Wang RU, Schober WD, Milella M et al (2003) Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 102:4179–4186

    Article  CAS  Google Scholar 

  26. Bezombes C, Laurent G, Jaffrezou JP (2003) Implication of raft microdomains in drug induced apoptosis. Curr Med Chem Anticancer Agents 3:263–270

    Article  CAS  Google Scholar 

  27. Daher GC, Harris BE, Diasio RB (1990) Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 48:189–222

    Article  CAS  Google Scholar 

  28. Jordheim L, Galmarini CM, Dumontet C (2003) Drug resistance to cytotoxic nucleoside analogues. Curr Drug Targets 4:443–460

    Article  CAS  Google Scholar 

  29. Smith MA, Smith JG, Pallister CJ, Singer CR (1999) Haematopoietic growth, the cell cycle and sensitivity of AML cells to ara-C. Leuk Lymphoma 23:467–472

    Article  Google Scholar 

  30. Ferrara F (2004) Unanswered questions in acute myeloid leukaemia. Lancet Oncol 5:443–450

    Article  Google Scholar 

  31. Alloush HM, Anderson E, Martin AD, Ruddock MW, Angell JE, Hill PJ, Mehta P, Smith MA, Smith JG, Salisbury VC (2010) A bioluminescent microbial biosensor for in vitro pretreatment assessment of cytarabine efficacy in leukemia. Clin Chem 256(12):1862–1870

    Article  Google Scholar 

  32. Yamauchi T, Negoro E, Kishi S, Takagi K, Yoshida A, Urasaki Y et al (2009) Intracellular cytarabine triphosphate production correlates to deoxycytidine kinase/cytosolic 5′-nucleotidase II expression ratio in primary acute myeloid leukemia cells. Biochem Pharmacol 77:1780–1786

    Article  CAS  Google Scholar 

  33. Hudson MM, Strickland DK, Phipps S, Srivastava DK, Ribeiro RC, Rubnitz JE et al (2000) Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18:3273–3279

    Google Scholar 

  34. Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bact 175:3401–3407

    CAS  Google Scholar 

  35. Wang J, Neuhard J, Eriksson S (1998) An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs. Antimicrob Agents Chemother 42:2620–2625

    CAS  Google Scholar 

  36. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1994) Four new derivatives of broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:800–802

    Google Scholar 

  37. Galluzzi L, Karp M (2007) Intracellular redox equilibrium and growth phase affect the performance of luciferase-based biosensors. J Biotech 127:188–198

    Article  CAS  Google Scholar 

  38. Cutter KL, Alloush HM, Salisbury VC (2006) Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes. Luminescence 22:177–181

    Article  Google Scholar 

  39. Kozakiewicz J, Gajewska M, Lyzeńn R, Czyz A, Wegrzyn G (2005) Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol Lett 250:105–110

    Article  CAS  Google Scholar 

  40. Czyz A, Plata K, Wegrzyn G (2002) Induction of light emission by luminescent bacteria treated with UV light and chemical mutagens. J Appl Genet 43:377–389

    Google Scholar 

  41. Anderson E, Conway M, Alloush H et al (2013) Investigation and verification of a bioluminescent biosensor for the quantitation of ara-CTP generation: A biomarker for cytosine arabinoside sensitivity in acute myeloid leukaemia. Biosens Bioelectron 52C:345–353

    Google Scholar 

  42. Anderson E, Smith MA, Martin A et al (2013) A novel bioluminescent bacterial biosensor for measurement of ara-CTP and cytarabine potentiation by fludarabine in seven leukaemic cell lines. Leuk Res 37(6):690–696

    Article  CAS  Google Scholar 

  43. Ahlman H, Khorram-Manesh A, Jansson S, Wängberg B, Nilsson O, Jacobsson CE, Lindstedt S (2001) Cytotoxic treatment of adrenocortical carcinoma. World J Surg 25(7):927–933

    Google Scholar 

  44. Volkova M, Russell R 3rd (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7(4):214–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyv Salisbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, E., Salisbury, V. (2014). Rapid In-vitro Testing for Chemotherapy Sensitivity in Leukaemia Patients. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 2. Advances in Biochemical Engineering/Biotechnology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43619-6_6

Download citation

Publish with us

Policies and ethics