Skip to main content

How Synthetic Biology Will Reconsider Natural Bioluminescence and Its Applications

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 2

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 145))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando Y et al (2007) Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2(1):44–47

    Article  Google Scholar 

  2. ASTM international (2012) Standard tables for reference solar spectral irradiances. http://www.astm.org/Standards/G173.htm. Accessed 31 July 2013

  3. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543

    Article  CAS  Google Scholar 

  4. Berg P et al (1975) Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci 72(6):1981–1984

    Article  CAS  Google Scholar 

  5. BioCurious (2013) Bioluminescence community project | BioCurious on WordPress.com. http://biocurious.org/projects/bioluminescence/. Accessed 7 August 2013

  6. Bryan B (2000) Bioluminescent novelty items. U.S. patent 6152358

    Google Scholar 

  7. Bull AT, Holt G, Lilly MD (1982) Biotechnology: international trends and perspectives. OECD, Paris

    Google Scholar 

  8. Callaway E (2013) Glowing plants spark debate. Nature 498(7452):15–16

    CAS  Google Scholar 

  9. Cannell MGR, Sheppard LJ, Milne R (1988) Light use efficiency and woody biomass production of poplar and willow. Forestry 61(2):125–136

    Article  Google Scholar 

  10. Carlson R (2011) New cost curves—synthesis. http://www.synthesis.cc/2011/06/new-cost-curves.html. Accessed 7 August 2013

  11. Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    Google Scholar 

  12. Chin JW (2012) Molecular biology. Reprogramming the genetic code. Science (New York, N.Y.) 336(6080):428–429

    Article  CAS  Google Scholar 

  13. Close DM et al (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line (Pan X ed). PloS one 5(8):p.e12441

    Google Scholar 

  14. Cole H (2006) Living drawings created with bioluminescent bacteria. http://www.huntercole.org/artgallery/livingbacterialdrawings/. Accessed 7 August 2013

  15. Dirckx P, Mast S, Pitts B (2003) Bioglyphs: painting with living bioluminescent bacteria. http://www.biofilm.montana.edu/Bioglyphs/Bioglyphs_01/Gallery08.htm. Accessed 7 August 2013

  16. Doty S (2006) Enhanced metabolism of a variety of environmental pollutants by transgenic plants. In: Presented at the joint annual meeting of the American society of plant biologists and the Canadian society of plant physiologists, Boston, MA, August 5–9, 2006

    Google Scholar 

  17. Evans A, Taylor K (2013) Glowing plants. http://glowingplant.com/. Accessed 28 August 2013

  18. Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  CAS  Google Scholar 

  19. Gomi K, Kajiyama N (2001) Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin. J Biol Chem 276(39):36508–36513

    Article  CAS  Google Scholar 

  20. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Marine Sci 2(1):443–493

    Article  Google Scholar 

  21. Hall DO, Rao K (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. Highfield R (2010) The science of christmas: we could grow our own fairy lights, say the tree wise men. Daily Telegraph

    Google Scholar 

  23. Hill JE, Kapuscinski AR, Pavlowich T (2011) Fluorescent transgenic zebra danio more vulnerable to predators than wild-type fish. Trans Am Fish Soc 140(4):1001–1005

    Article  Google Scholar 

  24. Kajiyama N, Nakano E (1991) Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng 4(6):691–693

    Article  CAS  Google Scholar 

  25. Karp A et al (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165

    Article  Google Scholar 

  26. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  CAS  Google Scholar 

  27. Koksharov MI, Ugarova NN (2011) Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 24(11):835–844

    Article  CAS  Google Scholar 

  28. Koncz C et al (1987) Expression and assembly of functional bacterial luciferase in plants. Proc Natl Acad Sci USA 84(1):131–135

    Article  CAS  Google Scholar 

  29. Krichevsky A et al (2010) Autoluminescent plants (Uversky VN ed). PloS one 5(11):p.e15461

    Google Scholar 

  30. Leclerc GM et al (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. BioTechniques 29(3):590–591, 594–596, 598 passim

    Google Scholar 

  31. Liu J, Chen T, Xiong H (2012) Programming cells through light. http://2012.igem.org/Team:Peking/Project/Communication/Results. Accessed 28 August 2013

  32. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2(4):191–198

    Article  Google Scholar 

  33. Miyamoto C et al (1987) Expression of bioluminescence by Escherichia coli containing recombinant Vibrio harveyi DNA. J Bacteriol 169(1):247–253

    CAS  Google Scholar 

  34. Mooney HA, Ehleringer J, Berry JA (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194:322–324

    Article  CAS  Google Scholar 

  35. Neumann H et al (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444

    Google Scholar 

  36. Niwa K, Nakamura M, Ohmiya Y (2006) Stereoisomeric bio-inversion key to biosynthesis of firefly D-luciferin. FEBS Lett 580(22):5283–5287

    Article  CAS  Google Scholar 

  37. Okada K et al (1974) Firefly bioluminescence III. Conversion of oxyluciferin to luciferin in firefly. Tetrahedron Lett 15(32):2771–2774

    Article  Google Scholar 

  38. Ow DW et al (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234(4778):856–859

    Article  CAS  Google Scholar 

  39. Philips NV (2011) Philips—design portfolio—design probes—bio-light. http://www.design.philips.com/philips/sites/philipsdesign/about/design/designportfolio/design_futures/bio_light.page. Accessed 7 August 2013

  40. Pinheiro VB (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344

    Google Scholar 

  41. Pokhilko A et al (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574

    Article  Google Scholar 

  42. Presidential commission for the study of bioethical issues (2010) New directions: the ethics of synthetic biology and emerging technologies

    Google Scholar 

  43. Sanderson T, Reeve B, Hanley W (2010) Cambridge iGEM project 2010. http://2010.igem.org/Team:Cambridge. Accessed 30 July 2013

  44. Slabas AR, Fawcett T (1992) The biochemistry and molecular biology of plant lipid biosynthesis (Schilperoort RA, Dure L eds). Springer, Dordrecht

    Google Scholar 

  45. Stevani CV et al (2013) Current status of research on fungal bioluminescence: biochemistry and prospects for ecotoxicological application. Photochem Photobiol 89:1318–1326

    Article  CAS  Google Scholar 

  46. Sun Y-Q et al (2012) D-luciferin analogues: a multicolor toolbox for bioluminescence imaging. Angewandte Chemie (International ed. in English) 51(34):8428–8430

    Google Scholar 

  47. Swain F (2010) Glowing trees could light up city streets. New Scientist

    Google Scholar 

  48. Tang W et al (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep 26(1):115–124

    Article  CAS  Google Scholar 

  49. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90(6):681–689

    Article  CAS  Google Scholar 

  50. Wang W et al (2013) A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol 14(12):1136–1142

    Google Scholar 

  51. Wright O, Stan G-B, Ellis T (2013) Building-in biosafety for synthetic biology. Microbiology (Reading, England) 159(Pt 7):1221–1235

    Google Scholar 

  52. Xu T et al (2013) Genetically modified whole-cell bioreporters for environmental assessment. Ecol Indic 28(null):125–141

    Google Scholar 

  53. Yang Z et al (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133:15105–15112

    Google Scholar 

  54. Yonder biology (2013) Kickstarter, DINO PET, a living, interactive, bioluminescent pet. http://www.kickstarter.com/projects/yonder/dino-pet-a-living-bioluminescent-night-light-pet. Accessed 7 August 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Freemont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reeve, B., Sanderson, T., Ellis, T., Freemont, P. (2014). How Synthetic Biology Will Reconsider Natural Bioluminescence and Its Applications. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 2. Advances in Biochemical Engineering/Biotechnology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43619-6_1

Download citation

Publish with us

Policies and ethics