Mechanizing the Minimization of Deterministic Generalized Büchi Automata

  • Souheib Baarir
  • Alexandre Duret-Lutz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8461)


Deterministic Büchi automata (DBA) are useful to (probabilistic) model checking and synthesis. We survey techniques used to obtain and minimize DBAs for different classes of properties. We extend these techniques to support DBA that have generalized and transition-based acceptance (DTGBA) as they can be even smaller. Our minimization technique—a reduction to a SAT problem—synthesizes a DTGBA equivalent to the input DTGBA for any given number of states and number of acceptance sets (assuming such automaton exists). We present benchmarks using a framework that implements all these techniques.


Model Check Generalize Acceptance Acceptance Condition Strongly Connect Component Deterministic Generalize 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI 2009, pp. 399–404 (July 2009)Google Scholar
  2. 2.
    Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  4. 4.
    Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 611–625. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Clemente, L., Mayr, R.: Advanced automata minimization. In: POPL 2013, pp. 63–74. ACM (2013)Google Scholar
  8. 8.
    Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for generalized büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 169–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the powerset construction for restricted classes of ω-automata. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 223–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011. British Computer Society (September 2011)Google Scholar
  11. 11.
    Ehlers, R.: Minimising deterministic büchi automata precisely using SAT solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for lTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005, pp. 321–330 (June 2005)Google Scholar
  14. 14.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theoretical Computer Science 363, 182–195 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Maler, O., Staiger, L.: On syntactic congruences for ω-languages. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 586–594. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC 1990, pp. 377–410. ACM (1990)Google Scholar
  19. 19.
    Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfiability checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 417–431. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel (March 1989)Google Scholar
  21. 21.
    Schewe, S.: Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl LZI (2010)Google Scholar
  22. 22.
    Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementation of generalised büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 42–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Souheib Baarir
    • 1
    • 2
  • Alexandre Duret-Lutz
    • 3
  1. 1.Université Paris Ouest Nanterre la DéfenseNanterreFrance
  2. 2.Sorbonne Universités, UPMC Univ. Paris 6, UMR 7606, LIP6ParisFrance
  3. 3.LRDE, EPITALe Kremlin-BicêtreFrance

Personalised recommendations