Skip to main content

A Cross-Lingual Correcting and Completive Method for Multilingual Ontology Labels

Abstract

Multilingual content in ontologies has one of the highest potentials for bridging linguistic borders on the Semantic Web. Human readability and automated linguistic processing of Multilingual Semantic Web resources depend on natural language content represented in labels . As there are currently no standards or best practices for labeling ontologies, existing labels are frequently highly condensed up to the point of losing their domain-specific expressivity. For instance, ellipses often used in labels pose a challenge to linguistic processing. Elided domain-specific elements challenge human users and machines alike. Thus, the proposed method expands condensed labels in four main processing steps by resolving complex natural language phenomena. It heavily relies on a cross-lingual comparison and employs idiosyncratic benefits of one language to process other languages.

Key Words

  • Cross-lingual patterns
  • Ontology-based NLP
  • Ontology design patterns
  • Ontology labels
  • Terms and subterms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-43585-4_14
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-43585-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1

Notes

  1. 1.

    http://owlapi.sourceforge.net/.

  2. 2.

    http://www.nooj4nlp.net.

  3. 3.

    http://www.isocat.org/datcat/.

  4. 4.

    Developed and issued by Standard & Poor’s and MSCI http://www.msci.com/products/indices/sector/gics/.

  5. 5.

    http://ontologydesignpatterns.org.

References

  • Declerck, T., & Gromann, D. (2012). Towards the generation of semantically enriched multilingual components of ontology labels. In P. Buitelaar, P. Cimiano, D. Lewis, J. Pustejovsky, & F. Sasaki (Eds.), Proceedings of the 3rd International Workshop on the Multilingual Semantic Web (MSW3) (Vol. 936, pp. 11–23). Boston: CEUR.

    Google Scholar 

  • Declerck, T., & Lendvai, P. (2010). Towards a standardized linguistic annotation of the textual content of labels in knowledge representation system. In N. Calzolari et al. (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10) (pp. 3836–3839). Valletta, Malta: European Language Resources Association (ELRA).

    Google Scholar 

  • Ell, B., Vrandečić, D., & Simperl, E. (2011). Labels in the web of data. In L. Aroyo et al. (Eds.), The Semantic Web: ISWC 2011 (Vol. 7031, pp. 162–176). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Federmann, C., Gromann, D., Declerck, T., Hunsicker, S., Krieger, H.-U., & Budin, G. (2012). Multilingual terminology acquisition for ontology-based information extraction. In G. A. de Cea, M. C. Suárez-Figueroa, R. García-Castro, & E. Montiel-Ponsoda (Eds.), Proceedings of the 10th Terminology and Knowledge Engineering Conference (TKE 2012) (pp. 166–175). Madrid: TKE.

    Google Scholar 

  • Fliedl, G., Kop, C., & Vöhringer, J. (2007). From OWL class and property labels to human understandable natural language. In Z. Kedad, N. Lammari, E. Métais, F. Meziane & Y. Rezgui (Eds.), Natural Language Processing and Information Systems (Vol. 4592, pp. 156–167). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Fu, B., Brennan, R., & O’Sullivan, D. (2012). A configurable translation-based cross-lingual ontology mapping system to adjust mapping outcome. Web Semantics: Science, Services and Agents on the World Wide Web, 15, 15–36.

    CrossRef  Google Scholar 

  • Gangemi, A., & Presutti, V. (2009). Ontology design patterns. In S. Staab & R. Studer (Eds.), Handbook on Ontologies (pp. 221–243). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Garcia, J., Montiel-Ponsoda, E., Cimiano, P., Gómez-Pérez, A., Buitelaar, P., & McCrae, J. (2012). Challenges for the multilingual web of data. Web Semantics: Science, Services and Agents on the World Wide Web, 11, 63–71.

    CrossRef  Google Scholar 

  • Gherasim, T., Harzallah, M., Berio, G., & Kuntz, P. (2013). Methods and tools for automatic construction of ontologies from textual resources: A framework for comparison and its application. In F. Guillet, B. Pinaud, G. Venturini & D. A. Zighed (Eds.), Advances in Knowledge Discovery and Management (Vol. 471, pp. 177–201). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012, October). OWL Web Ontology Language Primer (Vol. 27). Recommendation. World Wide Web Consortium (W3C).

    Google Scholar 

  • Krieger, H.-U., Declerck, T., & Nedunchezhian, A. K. (2012). MFO - The federated financial ontology for the MONNET project. In Proceedings of the 4th International Conference on Knowledge Engineering and Ontology Development (KEOD-2012) (pp. 327–330). Barcelona: SciTePress.

    Google Scholar 

  • Maynard, D., Funk, A., & Peters, W. (2009). Using lexico-syntactic ontology design patterns for ontology creation and population. In E. Blomqvist, K. S. F. Scharffe, & V. Svatek (Eds.), Proceedings of the Workshop on Ontology Patterns (WOP2009) (Vol. 516). CEUR-WS.org.

    Google Scholar 

  • Montiel-Ponsoda, E., Vila-Suero, D., Villazón-Terrazas, B., Dunsire, G., Escolano, E., & Gómez-Pérez, A. (2011). Style guidelines for naming and labeling ontologies in the multilingual web. In S. A. Sutton, T. Baker, M. Dekkers, D. I. Hillmann, M. Lauruhn, & J. Park (Eds.), Proceedings of International Conference on Dublin Core and Metadata Applications (DC-2011) (pp. 105–115). Dublin Core Metadata Initiative.

    Google Scholar 

  • Nguyen, T.-A., Power, R., Piwek, P., & Williams, S. (2013). Predicting the understandability of OWL inferences. In P. Cimiano, O. Corcho, V. Presutti, L. Hollink, & S. Rudolph (Eds.), The Semantic Web: Semantics and Big Data (Vol. 7882, pp. 109–123). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Wimalasuriya, D. C., & Dou, D. (2010). Ontology-based information extraction: An introduction and a survey of current approaches. Journal of Information Science, 36, 306–323.

    CrossRef  Google Scholar 

Download references

Acknowledgments

The DFKI part of this work has been supported by the Monnet project (Multilingual Ontologies for Networked knowledge), cofunded by the European Commission with Grant No. 248458, and by the TrendMiner project, co-funded by the European Commission with Grant No. 287863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Gromann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gromann, D., Declerck, T. (2014). A Cross-Lingual Correcting and Completive Method for Multilingual Ontology Labels. In: Buitelaar, P., Cimiano, P. (eds) Towards the Multilingual Semantic Web. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43585-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43585-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43584-7

  • Online ISBN: 978-3-662-43585-4

  • eBook Packages: Computer ScienceComputer Science (R0)