Skip to main content

Abstract

There is much in common between the aim and tools of the quantitative geneticist and the comparative biologist. One of the most interesting statistical tools of the quantitative genetics (QG) is the mixed model framework, especially the so-called animal model, which can be used for comparative analyses. In this chapter, we describe the phylogenetic generalised linear mixed model (PGLMM), which encompasses phylogenetic (linear) mixed model (PMM). The widely used phylogenetic generalised least square (PGLS) can be seen as a special case of PGLMM. Thus, we demonstrate how PGLMM can be a useful extension of PGLS, hence a useful tool for the comparative biologist. In particular, we show how the PGLMM can tackle issues such as (1) intraspecific variance inference, (2) phylogenetic meta-analysis, (3) non-Gaussian traits analysis, and (4) missing values and data augmentation. Further possible extensions of the PGLMM and applications to phylogenetic comparative (PC) analysis are discussed at the end of the chapter. We provide working examples, using the R package MCMCglmm, in the online practical material (OPM).

The original version of this chapter was revised: Online Practical Material website has been updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-662-43550-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    But, any kind of evolutionary model yielding such a variance–covariance matrix can be used, such as Martins and Hansen’s (1997) or ACDC processes (Blomberg et al. 2003). In practice, parameters of such models would be inferred before using the mixed model, but nothing, in theory, forbids the construction of a complex mixed model inferring these components along with performing the comparative regression.

  2. 2.

    Of course, there can be an arbitrary number of such co-factors (either continuous or categorical variables).

  3. 3.

    Note that, although \( \lambda \) could be forced to one by setting up \( \sigma^{2}_{R} = 0 \) in the model, this could cause numerical instability in frequentist software or strong auto-correlation in MCMC algorithms. The software MCMCglmm, for example, does not allow such a setting. Furthermore, there is some relevance in assuming that some of the biological variability is not captured by the phylogeny (such as environment or even measurement variability), hence assuming a residual variance. Also, notably, when \( \sigma^{2}_{R} = 0 \), PMM can be seen as equivalent to PGLS and thus PIC (Stone et al. 2011; Blomberg et al. 2012).

  4. 4.

    This is not totally true, since \( \sigma^{2}_{R} \) also include noise such as measurement error, which is very difficult to distinguish from intraspecific variance without a careful design.

  5. 5.

    These standardised metrics are unbounded and follow approximately normal distributions. However, note that the correlation coefficient r is bounded at −1 and 1 and does not follow a normal distribution.

  6. 6.

    In a typical non-phylogenetic meta-analysis, a unit of analysis is ‘study’ where one effect size is taken from one study. Here, we assume that one effect size from each species comes from one study or \( n_{\text{effect}} = n_{\text{species}} = n_{\text{study}} \).

  7. 7.

    However, the penalised quasi-likelihood used in ASReml has been shown to largely underestimate the variance components for binary traits (Gilmour et al. 2006; de Villemereuil et al. 2013).

  8. 8.

    Note, however, that e in Eq. 11.14 should be considered as the effect due to additive dispersion rather than the residuals (for additive dispersion, see Nakagawa and Schielzeth 2010).

  9. 9.

    The data augmentation of Sect. 11.3.2, though, is very much linked to the MCMC algorithm.

References

  • Adams D (2008) Phylogenetic meta-analysis. Evolution. Int J Organ Evol 62(3):567–572. doi:10.1111/j.1558-5646.2007.00314.x

    Article  PubMed  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745

    Article  PubMed  Google Scholar 

  • Blomberg SP, Lefevre JG, Wells JA, Waterhouse M (2012) Independent contrasts and PGLS regression estimators are equivalent. Syst Biol 61(3):382–391. doi:10.1093/Sysbio/Syr118

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25. doi:10.2307/2290687

    Google Scholar 

  • Buckley YM, Ramula S, Blomberg SP, Burns JH, Crone EE, Ehrlén J, Knight TM, Pichancourt JB, Quested H, Wardle GM (2010) Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecol Lett 13(9):1182–1197. doi:10.1111/j.1461-0248.2010.01506.x

    Article  PubMed  Google Scholar 

  • Chamberlain S, Hovick S, Dibble C, Rasmussen N, Van Allen B, Maitner B, Ahern J, Lukas B, Roy C, Maria M, Carrillo J, Siemann E, Lajeunesse M, Whitney K (2012) Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol Lett 15(6):627–636. doi:10.1111/j.1461-0248.2012.01776.x

    Article  PubMed  Google Scholar 

  • Charmantier A, Réale D (2005) How do misassigned paternities affect the estimation of heritability in the wild? Mol Ecol 14(9):2839–2850. doi:10.1111/j.1365-294X.2005.02619.x

    Article  CAS  PubMed  Google Scholar 

  • Cleasby IR, Nakagawa S (2012) The influence of male age on within-pair and extra-pair paternity in passerines. Ibis 154(2):318–324. doi:10.1111/J.1474-919x.2011.01209.X

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale, New Jersey

    Google Scholar 

  • Cornwallis CK, West SA, Davis KE, Griffin AS (2010) Promiscuity and the evolutionary transition to complex societies. Nature 466(7309):969–72. doi:10.1038/nature09335

    Article  CAS  PubMed  Google Scholar 

  • de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12(1):102. doi:10.1186/1471-2148-12-102

    Article  PubMed  PubMed Central  Google Scholar 

  • de Villemereuil P, Gimenez O, Doligez B (2013) Comparing parent–offspring regression with frequentist and bayesian animal models to estimate heritability in wild populations: a simulation study for gaussian and binary traits. Meth Ecol Evol 4(3):260–275. doi:10.1111/2041-210X.12011

    Article  Google Scholar 

  • Davis J, Spaeth J, Huson C (1961) A technique for analyzing the effects of group composition. Am Sociol Rev 26(2):215–225. doi:10.2307/2089857

    Article  Google Scholar 

  • Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35(2):212–236

    Google Scholar 

  • Enders CK (2010) Applied missing data analysis. Methodology in the social sciences. Guilford Press, New York, 2010008465 GBB060973 Craig K. Enders. ill.; 26 cm. Includes bibliographical references (p 347–358) and indexes. Methodology in the social sciences

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 1–15

    Article  Google Scholar 

  • Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and within species. Philos Trans: Biol Sci 360(1459):1427–1434

    Article  Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725. doi 10.1086/587525

    Article  PubMed  Google Scholar 

  • Fisher D, Blomberg S, Owens I (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc Biol Sci/Roy Soc 270(1526):1801–1808. doi:10.1098/rspb.2003.2447

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: A test and review of evidence. Am Nat 160(6):712–726. doi:10.1086/343873

    Article  CAS  PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60(6):876–880

    Article  PubMed  Google Scholar 

  • Garamszegi LZ, Marko G, Herczeg G (2012) A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables. Evol Ecol 26(5):1213–1235. doi:10.1007/S10682-012-9589-8

    Article  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gilmour AR, Anderson RD, Rae AL (1985) The analysis of binomial data by a generalized linear mixed model. Biometrika 72(3):593–599. doi:10.1093/biomet/72.3.593

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. http://www.vsni.co.uk/software/asreml/

  • Gonzalez-Suarez M, Lucas PM, Revilla E (2012) Biases in comparative analyses of extinction risk: mind the gap. J Anim Ecol 81(6):1211–1222

    Article  PubMed  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. J Stat Softw 33(2):1–22

    Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23(3):494–508. doi:10.1111/j.1420-9101.2009.01915.x

    Article  CAS  PubMed  Google Scholar 

  • Hadfield JD, Kranov B, Poulin R, Nakagawa S (2014) A tale of two phylogenies: comparative analyses of ecological interactions. Am Nat 183(2):174–187

    Article  PubMed  Google Scholar 

  • Hansen TF, Orzack SH (2005) Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: the need for controlled comparisons. Evolution 59(10):2063–2072

    PubMed  Google Scholar 

  • Henderson C (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 1:69–83

    Article  Google Scholar 

  • Hill WG, Kirkpatrick M(2010) What animal breeding has taught us about evolution. Ann Rev Ecol, Evol Syst 41:1–19. doi:10.1146/annurev-ecolsys-102209-144728

    Article  Google Scholar 

  • Horváthová T, Nakagawa S, Uller T (2012) Strategic female reproductive investment in response to male attractiveness in birds. Proc Roy Soc B-Biol Sci 279(1726):163–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Housworth E, Martins E, Lynch M (2004) The phylogenetic mixed model. Am Nat 163(1):84–96. doi:10.1086/380570

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (2003) Detecting correlation between characters in a comparative analysis with uncertain phylogeny. Evolution 57(6):1237–1247

    Article  PubMed  Google Scholar 

  • Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecol Monogr 81(3):511–525

    Article  Google Scholar 

  • Ives AR, Zhu J (2006) Statistics for correlated data: phylogenies, space, and time. Ecol Appl 16(1):20–32

    Article  PubMed  Google Scholar 

  • Jennions MD, Kahn AT, Kelly CD, Kokko H (2012) Meta-analysis and sexual selection: past studies and future possibilities. Evol Ecol 26(5):1119–1151. doi: 10.1007/S10682-012-9567-1

    Article  Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2013) The handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Lajeunesse M (2009) Meta-analysis and the comparative phylogenetic method. The Am Nat 174(3):369–381. doi:10.1086/603628

    PubMed  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, Wiley series in probability and statistics, 2nd edn. Wiley, Hoboken, N.J., p 349–364

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10(4):325–337

    Google Scholar 

  • Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45(5):1065–1080. doi:10.2307/2409716

    Article  PubMed  Google Scholar 

  • Maklakov AA, Immler S, Gonzalez-Voyer A, Ronn J, Kolm N (2011) Brains and the city: big-brained passerine birds succeed in urban environments. Biol Lett 7(5):730–732. doi:10.1098/Rsbl.2011.0341

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149(4):646–667

    Article  Google Scholar 

  • Meuwissen T, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313. doi:10.1186/1297-9686-24-4-305

    Article  Google Scholar 

  • Miles DB, Dunham AE (1993) Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses. Ann Rev Ecol Syst 587–619

    Article  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82(4):591–605

    Article  PubMed  Google Scholar 

  • Nakagawa S, Freckleton RP (2008) Missing inaction: the dangers of ignoring missing data. Trends Ecol Evol 23(11):592–596

    Article  Google Scholar 

  • Nakagawa S, Poulin R (2012) Meta-analytic insights into evolutionary ecology: an introduction and synthesis. Evol Ecol 26(5):1085–1099

    Article  Google Scholar 

  • Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26(5):1253–1274

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc 85(4):935–956. doi:10.1111/j.1469-185X.2010.00141.x

  • Prokop ZM, Michalczyk L, Drobniak SM, Herdegen M, Radwan J (2012) Metaanalysis suggests choosy females get sexy sons more than ”good genes”. Evolution 66(9):2665–2673

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) {R}: a language and environment for statistical computing. http://www.R-project.org/

  • Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology in press

    Google Scholar 

  • Ross L, Gardner A, Hardy N, West SA (2013a) Ecology, not the genetics of sex determination, determines who helps in eusocial populations. Curr Biol 23(23):2383–2387. doi:10.1016/j.cub.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  • Ross L, Hardy NB, Okusu A, Normark BB (2013b) Large population size predicts the distribution of asexuality in scale insects. Evolution 67(1):196–206. doi:10.1111/J.1558-5646.2012.01784.X

    Article  PubMed  Google Scholar 

  • Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–590

    Article  Google Scholar 

  • Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York, NY

    Book  Google Scholar 

  • Santos ESA, Nakagawa S (2012) The costs of parental care: a meta-analysis of the trade-off between parental effort and survival in birds. J Evol Biol 25(9):1911–1917. doi:10.1111/J.1420-9101.2012.02569.X

    Article  CAS  PubMed  Google Scholar 

  • Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Meth Ecol Evol 4(1):14–24. doi:10.1111/j.2041-210x.2012.00251.x

    Article  Google Scholar 

  • Sillanp¨a¨a MJ (2011) On statistical methods for estimating heritability in wild populations. Mol Ecol 20(7):1324–1332. doi:10.1111/j.1365-294X.2011.05021.x

    Article  PubMed  Google Scholar 

  • Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Philos Trans Roy Soc B: Biol Sci 366(1569):1410 –1424. doi:10.1098/rstb.2010.0311

    Article  Google Scholar 

  • van Buuren S (2012) Flexible imputation of missing data. Chapman and hall/CRC interdisciplinary statistics series. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • van de Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77(3):753–758. doi:10.1016/j.anbehav.2008.11.006

    Article  Google Scholar 

  • Waters J, Fraser C, Hewitt G (2013) Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28(2):78–85. doi:10.1016/j.tree.2012.08.024

    Article  Google Scholar 

  • Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19(6):506–536

    Google Scholar 

Download references

Acknowledgments

We are grateful for S. Lavergne, M. Lagisz, L. Z. Garamszegi and two anonymous reviewers for their comments on our earlier versions of this chapter; their comments have significantly improved this chapter. S.N. is supported by the Rutherford Discovery Fellowship (New Zealand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre de Villemereuil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Villemereuil, P., Nakagawa, S. (2014). General Quantitative Genetic Methods for Comparative Biology. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_11

Download citation

Publish with us

Policies and ethics