Advertisement

General Quantitative Genetic Methods for Comparative Biology

  • Pierre de Villemereuil
  • Shinichi Nakagawa

Abstract

There is much in common between the aim and tools of the quantitative geneticist and the comparative biologist. One of the most interesting statistical tools of the quantitative genetics (QG) is the mixed model framework, especially the so-called animal model, which can be used for comparative analyses. In this chapter, we describe the phylogenetic generalised linear mixed model (PGLMM), which encompasses phylogenetic (linear) mixed model (PMM). The widely used phylogenetic generalised least square (PGLS) can be seen as a special case of PGLMM. Thus, we demonstrate how PGLMM can be a useful extension of PGLS, hence a useful tool for the comparative biologist. In particular, we show how the PGLMM can tackle issues such as (1) intraspecific variance inference, (2) phylogenetic meta-analysis, (3) non-Gaussian traits analysis, and (4) missing values and data augmentation. Further possible extensions of the PGLMM and applications to phylogenetic comparative (PC) analysis are discussed at the end of the chapter. We provide working examples, using the R package MCMCglmm, in the online practical material (OPM).

Notes

Acknowledgments

We are grateful for S. Lavergne, M. Lagisz, L. Z. Garamszegi and two anonymous reviewers for their comments on our earlier versions of this chapter; their comments have significantly improved this chapter. S.N. is supported by the Rutherford Discovery Fellowship (New Zealand).

References

  1. Adams D (2008) Phylogenetic meta-analysis. Evolution. Int J Organ Evol 62(3):567–572. doi: 10.1111/j.1558-5646.2007.00314.xCrossRefGoogle Scholar
  2. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745CrossRefGoogle Scholar
  3. Blomberg SP, Lefevre JG, Wells JA, Waterhouse M (2012) Independent contrasts and PGLS regression estimators are equivalent. Syst Biol 61(3):382–391. doi: 10.1093/Sysbio/Syr118CrossRefGoogle Scholar
  4. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135. doi: 10.1016/j.tree.2008.10.008CrossRefGoogle Scholar
  5. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25. doi: 10.2307/2290687Google Scholar
  6. Buckley YM, Ramula S, Blomberg SP, Burns JH, Crone EE, Ehrlén J, Knight TM, Pichancourt JB, Quested H, Wardle GM (2010) Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecol Lett 13(9):1182–1197. doi: 10.1111/j.1461-0248.2010.01506.xCrossRefGoogle Scholar
  7. Chamberlain S, Hovick S, Dibble C, Rasmussen N, Van Allen B, Maitner B, Ahern J, Lukas B, Roy C, Maria M, Carrillo J, Siemann E, Lajeunesse M, Whitney K (2012) Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol Lett 15(6):627–636. doi: 10.1111/j.1461-0248.2012.01776.xCrossRefGoogle Scholar
  8. Charmantier A, Réale D (2005) How do misassigned paternities affect the estimation of heritability in the wild? Mol Ecol 14(9):2839–2850. doi: 10.1111/j.1365-294X.2005.02619.xCrossRefGoogle Scholar
  9. Cleasby IR, Nakagawa S (2012) The influence of male age on within-pair and extra-pair paternity in passerines. Ibis 154(2):318–324. doi: 10.1111/J.1474-919x.2011.01209.XCrossRefGoogle Scholar
  10. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale, New JerseyGoogle Scholar
  11. Cornwallis CK, West SA, Davis KE, Griffin AS (2010) Promiscuity and the evolutionary transition to complex societies. Nature 466(7309):969–72. doi: 10.1038/nature09335CrossRefGoogle Scholar
  12. de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12(1):102. doi: 10.1186/1471-2148-12-102CrossRefGoogle Scholar
  13. de Villemereuil P, Gimenez O, Doligez B (2013) Comparing parent–offspring regression with frequentist and bayesian animal models to estimate heritability in wild populations: a simulation study for gaussian and binary traits. Meth Ecol Evol 4(3):260–275. doi: 10.1111/2041-210X.12011CrossRefGoogle Scholar
  14. Davis J, Spaeth J, Huson C (1961) A technique for analyzing the effects of group composition. Am Sociol Rev 26(2):215–225. doi: 10.2307/2089857CrossRefGoogle Scholar
  15. Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35(2):212–236Google Scholar
  16. Enders CK (2010) Applied missing data analysis. Methodology in the social sciences. Guilford Press, New York, 2010008465 GBB060973 Craig K. Enders. ill.; 26 cm. Includes bibliographical references (p 347–358) and indexes. Methodology in the social sciencesGoogle Scholar
  17. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 1–15CrossRefGoogle Scholar
  18. Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and within species. Philos Trans: Biol Sci 360(1459):1427–1434CrossRefGoogle Scholar
  19. Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725. doi  10.1086/587525CrossRefGoogle Scholar
  20. Fisher D, Blomberg S, Owens I (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc Biol Sci/Roy Soc 270(1526):1801–1808. doi: 10.1098/rspb.2003.2447CrossRefGoogle Scholar
  21. Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433CrossRefGoogle Scholar
  22. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: A test and review of evidence. Am Nat 160(6):712–726. doi: 10.1086/343873CrossRefGoogle Scholar
  23. Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60(6):876–880CrossRefGoogle Scholar
  24. Garamszegi LZ, Marko G, Herczeg G (2012) A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables. Evol Ecol 26(5):1213–1235. doi: 10.1007/S10682-012-9589-8CrossRefGoogle Scholar
  25. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Gilmour AR, Anderson RD, Rae AL (1985) The analysis of binomial data by a generalized linear mixed model. Biometrika 72(3):593–599. doi: 10.1093/biomet/72.3.593CrossRefGoogle Scholar
  27. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. http://www.vsni.co.uk/software/asreml/
  28. Gonzalez-Suarez M, Lucas PM, Revilla E (2012) Biases in comparative analyses of extinction risk: mind the gap. J Anim Ecol 81(6):1211–1222CrossRefGoogle Scholar
  29. Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. J Stat Softw 33(2):1–22Google Scholar
  30. Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23(3):494–508. doi: 10.1111/j.1420-9101.2009.01915.xCrossRefGoogle Scholar
  31. Hadfield JD, Kranov B, Poulin R, Nakagawa S (2014) A tale of two phylogenies: comparative analyses of ecological interactions. Am Nat 183(2):174–187CrossRefGoogle Scholar
  32. Hansen TF, Orzack SH (2005) Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: the need for controlled comparisons. Evolution 59(10):2063–2072PubMedPubMedCentralGoogle Scholar
  33. Henderson C (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 1:69–83CrossRefGoogle Scholar
  34. Hill WG, Kirkpatrick M(2010) What animal breeding has taught us about evolution. Ann Rev Ecol, Evol Syst 41:1–19. doi: 10.1146/annurev-ecolsys-102209-144728CrossRefGoogle Scholar
  35. Horváthová T, Nakagawa S, Uller T (2012) Strategic female reproductive investment in response to male attractiveness in birds. Proc Roy Soc B-Biol Sci 279(1726):163–170CrossRefGoogle Scholar
  36. Housworth E, Martins E, Lynch M (2004) The phylogenetic mixed model. Am Nat 163(1):84–96. doi: 10.1086/380570CrossRefGoogle Scholar
  37. Huelsenbeck JP, Rannala B (2003) Detecting correlation between characters in a comparative analysis with uncertain phylogeny. Evolution 57(6):1237–1247CrossRefGoogle Scholar
  38. Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecol Monogr 81(3):511–525CrossRefGoogle Scholar
  39. Ives AR, Zhu J (2006) Statistics for correlated data: phylogenies, space, and time. Ecol Appl 16(1):20–32CrossRefGoogle Scholar
  40. Jennions MD, Kahn AT, Kelly CD, Kokko H (2012) Meta-analysis and sexual selection: past studies and future possibilities. Evol Ecol 26(5):1119–1151. doi:  10.1007/S10682-012-9567-1CrossRefGoogle Scholar
  41. Koricheva J, Gurevitch J, Mengersen K (2013) The handbook of meta-analysis in ecology and evolution. Princeton University Press, PrincetonCrossRefGoogle Scholar
  42. Lajeunesse M (2009) Meta-analysis and the comparative phylogenetic method. The Am Nat 174(3):369–381. doi: 10.1086/603628PubMedGoogle Scholar
  43. Little RJA, Rubin DB (2002) Statistical analysis with missing data, Wiley series in probability and statistics, 2nd edn. Wiley, Hoboken, N.J., p 349–364Google Scholar
  44. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10(4):325–337Google Scholar
  45. Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45(5):1065–1080. doi: 10.2307/2409716CrossRefGoogle Scholar
  46. Maklakov AA, Immler S, Gonzalez-Voyer A, Ronn J, Kolm N (2011) Brains and the city: big-brained passerine birds succeed in urban environments. Biol Lett 7(5):730–732. doi: 10.1098/Rsbl.2011.0341CrossRefGoogle Scholar
  47. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149(4):646–667CrossRefGoogle Scholar
  48. Meuwissen T, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313. doi: 10.1186/1297-9686-24-4-305CrossRefGoogle Scholar
  49. Miles DB, Dunham AE (1993) Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses. Ann Rev Ecol Syst 587–619CrossRefGoogle Scholar
  50. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82(4):591–605CrossRefGoogle Scholar
  51. Nakagawa S, Freckleton RP (2008) Missing inaction: the dangers of ignoring missing data. Trends Ecol Evol 23(11):592–596CrossRefGoogle Scholar
  52. Nakagawa S, Poulin R (2012) Meta-analytic insights into evolutionary ecology: an introduction and synthesis. Evol Ecol 26(5):1085–1099CrossRefGoogle Scholar
  53. Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26(5):1253–1274CrossRefGoogle Scholar
  54. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc 85(4):935–956. doi: 10.1111/j.1469-185X.2010.00141.x
  55. Prokop ZM, Michalczyk L, Drobniak SM, Herdegen M, Radwan J (2012) Metaanalysis suggests choosy females get sexy sons more than ”good genes”. Evolution 66(9):2665–2673CrossRefGoogle Scholar
  56. R Development Core Team (2011) {R}: a language and environment for statistical computing. http://www.R-project.org/
  57. Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology in pressGoogle Scholar
  58. Ross L, Gardner A, Hardy N, West SA (2013a) Ecology, not the genetics of sex determination, determines who helps in eusocial populations. Curr Biol 23(23):2383–2387. doi: 10.1016/j.cub.2013.10.013CrossRefGoogle Scholar
  59. Ross L, Hardy NB, Okusu A, Normark BB (2013b) Large population size predicts the distribution of asexuality in scale insects. Evolution 67(1):196–206. doi: 10.1111/J.1558-5646.2012.01784.XCrossRefGoogle Scholar
  60. Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–590CrossRefGoogle Scholar
  61. Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York, NYCrossRefGoogle Scholar
  62. Santos ESA, Nakagawa S (2012) The costs of parental care: a meta-analysis of the trade-off between parental effort and survival in birds. J Evol Biol 25(9):1911–1917. doi: 10.1111/J.1420-9101.2012.02569.XCrossRefGoogle Scholar
  63. Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Meth Ecol Evol 4(1):14–24. doi: 10.1111/j.2041-210x.2012.00251.xCrossRefGoogle Scholar
  64. Sillanp¨a¨a MJ (2011) On statistical methods for estimating heritability in wild populations. Mol Ecol 20(7):1324–1332. doi: 10.1111/j.1365-294X.2011.05021.xCrossRefGoogle Scholar
  65. Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Philos Trans Roy Soc B: Biol Sci 366(1569):1410 –1424. doi: 10.1098/rstb.2010.0311CrossRefGoogle Scholar
  66. van Buuren S (2012) Flexible imputation of missing data. Chapman and hall/CRC interdisciplinary statistics series. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  67. van de Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77(3):753–758. doi: 10.1016/j.anbehav.2008.11.006CrossRefGoogle Scholar
  68. Waters J, Fraser C, Hewitt G (2013) Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28(2):78–85. doi: 10.1016/j.tree.2012.08.024CrossRefGoogle Scholar
  69. Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19(6):506–536Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire d’Écologie Alpine (LECA-UMR CNRS 5553)Université Joseph FourierGrenobleFrance
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations