Skip to main content

Principle of Multi-Pollutants Removal Technology in Flue Gas by Ozone

  • Chapter
  • 574 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

NO x , which are a significant threat to the environment, usually consist of 95% NO in coal-fired flue gas. NO is characteristic of an extremely low water-solubility. Thus, a process similar to that used to remove sulfur content from flue gas is barely applicable for NO x removal. On the contrary, compounds with a high N valence (i.e., NO2, NO3, and N2O5) have a high solubility in water to produce HNO3. This means that when initially oxidizing to these compounds and then using an alkaline solution process, NO can be removed together with other acid gases (such as SO2, HCl, and HF) in flue gas [1]. Similarly, 80% – 90% of Hg2+ (i.e., HgO, HgCl2, and Hg2Cl2) can be eliminated by WFGD even though Hg is hardly soluble in water [2,3]. Table 2.1 shows the water solubilities of main pollutants in flue gas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas D, Vanderschuren J. Nitrogen oxides scrubbing with alkaline solutions. Chemical Engineering & Technology, 2000(23):449–455.

    Article  CAS  Google Scholar 

  2. Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, et al. State review of mercury control options for coal-fired power plants. Fuel Processing Technology, 2003(82):89–165.

    Article  CAS  Google Scholar 

  3. Martin K, Gonzalez E, Zhou CQ, Livengood CD. Elemental mercury removal using a wet scrubber. Proceedings of the American Power Conference, Chicago, USA, 1999.

    Google Scholar 

  4. Rubin ES, Hao Y. Engineering and Environment Introduction. Beijing: Science Press, 2004.

    Google Scholar 

  5. Chu J, Wu C, Chen W, Chen Z. Ozone Technology and Application. Beijing: Chemical Industry Press, 2002.

    Google Scholar 

  6. Li L, Zhu W, Li H. Removal of refractory pollutants with catalytic ozonation adsorption technology. China Water & Wastewater, 2002(18):23–25.

    CAS  Google Scholar 

  7. Chen M. Ozone technology and its application investigation in water treatment. Mechanical & Electronical Equipment, 2002(4):28–31.

    Google Scholar 

  8. Liu C. Research development of ozone advanced oxidation technology in water treatment. Petrochemical Technology and Application, 2002(20):278–280.

    CAS  Google Scholar 

  9. Sun D, Yu X, Feng Y. Advanced Oxidation Technology in Environmental Engineering. Beijing: Chemical Industry Press, 2002.

    Google Scholar 

  10. NIST. Chemical Kinetics Database on the Web. http://kinetics.nist.gov/ index.php.

    Google Scholar 

  11. Mitsuo T, Ritsuo A, Tomoihiro D. Electric discharge type ozone generator with point contact anode. JP,191907,20032012081.

    Google Scholar 

  12. Yue C, Chen W, Chu J. Corona discharge ozone generator electrode research. High Voltage Technique, 2002(28):42–44.

    Google Scholar 

  13. Gibalov VI, Pietsch GJ. Properties of dielectric barrier discharges in extended coplanar electrode systems. Journal of Physics D-Applied Physics, 2004(37):2093–2100.

    Article  CAS  Google Scholar 

  14. Gibalov VI, Pietsch GJ. Dynamics of dielectric barrier discharges in coplanar arrangements. Journal of Physics D-Applied Physics, 2004(37):2082–2092.

    Article  CAS  Google Scholar 

  15. Boonseng C, Kinnares V, Apriratikul P. Harmonic analysis of corona discharge ozone generator using brush electrode configuration. Proceedings of IEEE Power Engineering Society Winter Meeting, Singapore, 2000.

    Google Scholar 

  16. Abdel-Salam M, Hashem A, Yehia A, Mizuno A, Turky A, Gabr A. Characteristics of corona and silent discharges as influenced by geometry of the discharge reactor. Journal of Physics D-Applied Physics, 2003(36):252–260.

    Article  CAS  Google Scholar 

  17. Yehia A, Abdel-Salam M, Mizuno A. On assessment of ozone generation in dc coronas. Journal of Physics D-Applied Physics, 2000(33):831–835.

    Article  CAS  Google Scholar 

  18. Yehia A, Mizuno A, Takashima K. On the characteristics of the corona discharge in a wire-duct reactor. Journal of Physics D-Applied Physics, 2000(33):2807–2814.

    Article  CAS  Google Scholar 

  19. Akhmedzhanov RA, Vikharev AL, Gorbachev AM, Ivanov OA, Kolysko AL. The role of atomic oxygen O(3P) in decomposition of freon in a nanosecond corona discharge. Technical Physics Letters, 1996(22):104–106.

    Google Scholar 

  20. Cicman P, Pavlik M, Rahel J. Negative corona discharge in air+CCl2F2 mixture. Proceedings of Contributed Papers ICPIG 97, Toulouse, France, 1997.

    Google Scholar 

  21. Skalny JD, Mason NJ. The effect of halomethane impurities on ozone generation from oxygen in DC negative corona discharge. Ozone-Science & Engineering, 2002(24):329–341.

    Article  CAS  Google Scholar 

  22. Skalny JD, Rahel J, Holubcik L. Ozone generation in oxygen-fed wire-to-cylinder ozonizer: Effect of CH2Cl2, CHCl3 and CCl4 diluents. Czechoslovak Journal of Physics 1999(49):335–348.

    Article  CAS  Google Scholar 

  23. Mikoviny T, Kocan M, Matejcik S, Mason NJ, Skalny JD. Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen. Journal of Physics D-Applied Physics, 2004(37):64–73.

    Article  CAS  Google Scholar 

  24. Skalny JD, Matejcik S, Mikoviny T, Eden S, Mason NJ. Ozone generation in a negative corona discharge fed with N2O and O2. Journal of Physics D-Applied Physics, 2004(37): 1052–1057.

    Article  CAS  Google Scholar 

  25. Stefanovic I, Bibinov NK, Deryugin AA, Vinogradov IP, Napartovich AP, Wiesemann K. Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NO x and N2/O2/NO x mixtures. Plasma Sources Science & Technology, 2001(10):406–416.

    Article  CAS  Google Scholar 

  26. Skalny JD, Mikoviny T, Mason NJ. Experimental investigations and modeling studies of ozone producing corona discharges. Czechoslovak Journal of Physics, 2002(23):29–37.

    Google Scholar 

  27. Novoselov YN, Ryzhov VV, Suslov AI. Effect of electronegative impurities on the generation of ozone in air. Technical Physics, 1999(44):44–47.

    Article  CAS  Google Scholar 

  28. Skalny JD, Mikoviny T, Mason NJ, Sobek V. The effect of gaseous diluents on ozone generation from oxygen. Ozone-Science & Engineering, 2002(24):29–37.

    Article  CAS  Google Scholar 

  29. Chu J, Wu C, Chen W. Ozone Technology and Application. Beijing: Chemical Industry Press, 2002.

    Google Scholar 

  30. Liu W, Wu J, Chen Y. Ozone generator modification with Al2O3 ceramic substrates. Ceramic Technology, 2001(22): 175–179.

    CAS  Google Scholar 

  31. Zhang Z, Bai M. High concentration ozone generator discharge experimental study. High Voltage Technique, 2003(29):33–35.

    Google Scholar 

  32. Park SL, Moon JD, Lee SH, Shin SY Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator. Journal of Electrostatics, 2006(64):275–282.

    Article  CAS  Google Scholar 

  33. Zhao C, He Z, Li J. Research advances of gas discharge ozone generator. High Voltage Technique, 2002(28):44–46.

    Google Scholar 

  34. Wang F, Zhu T, Yao H. Design of ozone generating pipe and its stability research. Hehai University Changzhou Campus Journal, 2002(16):1–5.

    Google Scholar 

  35. Zhu T, Zhou H, Bian X. Research of organic polymer dielectric body ozone generating pipe properties. High Voltage Technique, 2002(28):38–40.

    Google Scholar 

  36. Kishida H, Ishizaka M, Tanaka Y, Ehara Y, Ito T. Superposed effect of UV rays on ozone generation by electrical discharge. Electrical Engineering in Japan, 1998(123):8–14.

    Article  Google Scholar 

  37. Kishida H, Tamura M, Ehara Y, Ito T, Onouchi H. Improvement in ozone yield using discharge superposition method. Electrical Engineering in Japan, 1999(126):1–6.

    Article  Google Scholar 

  38. Hakiai K, Ihara S, Satoh S, Yamabe C. Characteristics of ozone generation by a diffuse glow discharge at atmospheric pressure using a double discharge method. Electrical Engineering in Japan, 1999(127):8–14.

    Article  Google Scholar 

  39. Masuda S, Koizumi S, Inoue J, Araki H. Production of ozone by surface and glow-discharge at cryogenic temperatures. IEEE Transactions on Industry Applications, 1988(24):928–933.

    Article  CAS  Google Scholar 

  40. Nomura T, Ehara Y, Ito T, Matsuyama M. Effect of applied voltage frequency on NO x removal rate for a superimposing discharge reactor. Journal of Electrostatics, 2000(49):83–93.

    Article  CAS  Google Scholar 

  41. Nomoto Y, Ohkubo T, Kanazawa S, Adachi T. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer. IEEE Transactions on Industry Applications, 1995(31):1458–1462.

    Article  CAS  Google Scholar 

  42. Ma HB, Qiu YC. A study of ozone synthesis in coaxial cylinder pulse streamer corona discharge reactors. Ozone-Science & Engineering, 2003(25): 127–135.

    Article  CAS  Google Scholar 

  43. Hakiai K, Takazaki D, Ihara S, Satoh S, Yamabe C. Spatial distribution and characteristics of ozone generation with glow discharge using a double discharge method. Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 1999(38):221–224.

    Article  CAS  Google Scholar 

  44. Ahn HS, Hayashi N, Ihara S, Yamabe C. Ozone generation characteristics by superimposed discharge in oxygen-fed ozonizer. Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 2003(42):6578–6583.

    Article  CAS  Google Scholar 

  45. Song HJ, Chun BJ, Lee KS. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma. Journal of the Korean Physical Society, 2004(44): 1182–1188.

    CAS  Google Scholar 

  46. Shimosaki M, Hayashi N, Ihara S, Satoh S, Yamabe C. Effect of trigger electrodes configuration of a double discharge ozonizer on ozone generation characteristics. Vacuum, 2004(73):573–577.

    Article  CAS  Google Scholar 

  47. Kaneda S, Hayashi N, Ihara S, Satoh S, Yamabe C. Application of dielectric material to double-discharge-type ozonizer. Vacuum, 2004(73):567–571.

    Article  CAS  Google Scholar 

  48. Buntat Z, Harry JE, Smith IR. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen. Journal of Physics D-Applied Physics, 2003(36):1553–1557.

    Article  CAS  Google Scholar 

  49. Chalmers ID, Zanella L, MacGregor SJ. Ozone synthesis in oxygen in a dielectric barrier free configuration. Pulsed Power Conference, Albuquerque, USA, 1995.

    Google Scholar 

  50. Akiyama H, Nishihashi Y, Tsukamoto S. Streamer discharge by pulsed power on a spiral transmission line. Pulsed Power Conference, Baltimore, USA, 1997.

    Google Scholar 

  51. Simek M, Clupek M. Efficiency of ozone production by pulsed positive corona discharge in synthetic air. Journal of Physics D-Applied Physics, 2002(35):1171–1175.

    Article  CAS  Google Scholar 

  52. Motret O, Hibert C, Pouvesle JM. Ozone production by an ultra-short triggered dielectric barrier discharge. Geometrical considerations. Ozone: Science & Engineering, 2002(24):203–213.

    Article  CAS  Google Scholar 

  53. Samaranayake WJM, Hackam R, Akiyama H. Ozone synthesis in a cylindrical dry air-fed ozonizer by non thermal gas discharges. Proceedings of the 7 International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003.

    Google Scholar 

  54. Samaranayake WJM, Namihira T, Katsuki S, Miyahara Y, Sakugawa T, Hackam R, et al. Pulsed power production of ozone using nonthermal gas discharges. IEEE Electrical Insulation Magazine, 2001 (17): 17–25.

    Article  Google Scholar 

  55. Namihira T, Shinozaki K, Katsuki S, Hackam R, Akiyama H, Sakugawa T. Characteristics of ozonizer using pulsed power. Proceedings of Pulsed Power Plasma Science, Las Vegas, USA, 2001.

    Google Scholar 

  56. Namihira T, Wang DY, Katsuki S, Hackam R, Akiyama H. Propagation velocity of pulsed streamer discharges in atmospheric air. IEEE Transactions on Plasma Science, 2003(31):1091–1094.

    Article  CAS  Google Scholar 

  57. Tsukamoto S, Namihira T, Hori H, Shinozaki K, Katsuki S, Hackam R, et al. An analysis of pulsed streamer discharge using a high-speed camera. Proceedings of Pulsed Power Plasma Science, Las Vegas, USA, 2001.

    Google Scholar 

  58. Shimomura N, Wakimoto M, Togo H, Namihira T, Akiyama H. Production of ozone using nanosecond short pulsed power. Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, USA, 2003.

    Google Scholar 

  59. Samaranayake WJM, Hackam R, Akiyama H. Ozone synthesis in oxygen using a pulsed discharge. Proceedings of Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, Cincinnati, USA, 2001.

    Google Scholar 

  60. Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, et al. Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Transactions on Dielectrics and Electrical Insulation, 2000(7):254–260.

    Article  CAS  Google Scholar 

  61. Ono R, Oda T. Formation and structure of primary and secondary streamers in positive pulsed corona discharge — Effect of oxygen concentration and applied voltage. Journal of Physics D-Applied Physics, 2003(36):1952–1958.

    Article  CAS  Google Scholar 

  62. Ono R, Oda T. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method. Journal of Physics D-Applied Physics, 2004(37):730–735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z., Cen, K., Zhou, J., Fan, J. (2014). Principle of Multi-Pollutants Removal Technology in Flue Gas by Ozone. In: Simultaneous Multi-Pollutants Removal in Flue Gas by Ozone. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43514-4_2

Download citation

Publish with us

Policies and ethics