Skip to main content

Preference-Based Multiobjective Particle Swarm Optimization for Airfoil Design

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

Abstract

A significant challenge to the application of evolutionary multiobjective optimization (GlossaryTerm

EMO

) for transonic airfoil design is the often excessive number of computational fluid dynamic (GlossaryTerm

CFD

) simulations required to ensure convergence. In this study, a multiobjective particle swarm optimization (GlossaryTerm

MOPSO

) framework is introduced, which incorporates designer preferences to provide further guidance in the search. A reference point is projected onto the Pareto landscape by the designer to guide the swarm towards solutions of interest. The framework is applied to a typical transonic airfoil design scenario for robust aerodynamic performance. Time-adaptive Kriging models are constructed based on a high-fidelity Reynolds-averaged Navier–Stokes (GlossaryTerm

RANS

)solver to assess the performance of the solutions. The successful integration of these design tools is facilitated through the reference point, which ensures that the swarm does not deviate from the preferred search trajectory. A comprehensive discussion on the proposed optimization framework is provided, highlighting its viability for the intended design

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFD:

computational fluid dynamics

EA:

evolutionary algorithm

EMO:

evolutionary multiobjective optimization

FMG:

full multi-grid

LHS:

latin hypercube sampling

MOO:

multi-objective optimization

MOP:

multiobjective problem

MOPSO:

multiobjective particle swarm optimization

NASA:

National Aeronautics and Space Administration

NSGA:

nondominated sorting genetic algorithm

NSPSO:

nondominated sorting particle swarm optimization

PSO:

particle swarm optimization

RANS:

Reynolds-averaged Navier–Stokes

SOM:

self-organizing map

UPMOPSO:

user-preference multiobjective PSO

References

  1. T.E. Labrujère, J.W. Sloof: Computational methods for the aerodynamic design of aircraft components, Annu. Rev. Fluid Mech. 51, 183–214 (1993)

    Article  Google Scholar 

  2. R.M. Hicks, P.A. Henne: Wing design by numerical optimization, J. Aircr. 15(7), 407–412 (1978)

    Article  Google Scholar 

  3. J. Kennedy, R.C. Eberhart, Y. Shi: Swarm Intelligence (Morgan Kaufmann, San Francisco 2001)

    Google Scholar 

  4. J. Kennedy, R.C. Eberhart: Particle swarm optimization, Proc. IEEE Intl. Conf. Neural Netw. (1995) pp. 1942–1948

    Chapter  Google Scholar 

  5. I.C. Trelea: The particle swarm optimization algorithm: Convergence analysis and parameter selection, Inform. Proces. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.M. Fonseca, P.J. Fleming: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. A unified formulation, IEEE Trans. Syst. Man Cybern. A 28(1), 26–37 (1998)

    Article  Google Scholar 

  7. M. Drela: Pros and cons of airfoil optimization, Front. Comput. Fluid Dynam. 19, 1–19 (1998)

    MATH  Google Scholar 

  8. W. Li, L. Huyse, S. Padula: Robust airfoil optimization to achieve drag reduction over a range of mach numbers, Struct. Multidiscip. Optim. 24, 38–50 (2002)

    Article  Google Scholar 

  9. M. Nemec, D.W. Zingg, T.H. Pulliam: Multipoint and multi-objective aerodynamic shape optimization, AIAA J. 42(6), 1057–1065 (2004)

    Article  Google Scholar 

  10. I. Das, J.E. Dennis: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  11. R.T. Marler, J.S. Arora: Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.M. Fonseca, P.J. Fleming: An overview of evolutionary algorithms in multiobjective optimization, Evol. Comput. 3, 1–16 (1995)

    Article  Google Scholar 

  13. K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, New york 2001)

    MATH  Google Scholar 

  14. C.A. Coello Coello: Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  15. S. Obayashi, D. Sasaki, Y. Takeguchi, N. Hirose: Multiobjective evolutionary computation for supersonic wing-shape optimization, IEEE Trans. Evol. Comput. 4(2), 182–187 (2000)

    Article  Google Scholar 

  16. A. Vicini, D. Quagliarella: Airfoil and wing design through hybrid optimization strategies, AIAA J. 37(5), 634–641 (1999)

    Article  Google Scholar 

  17. A. Ray, H.M. Tsai: Swarm algorithm for single and multiobjective airfoil design optimization, AIAA J. 42(2), 366–373 (2004)

    Article  Google Scholar 

  18. M. Ehrgott, X. Gandibleux: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys (Kluwer, Boston 2002)

    MATH  Google Scholar 

  19. M.R. Sierra, C.A. Coello Coello: Multi-objective particle swarm optimizers: A survey of the state-of-the-art, Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  20. A.P. Engelbrecht: Fundamentals of Computational Swarm Intelligence (Wiley, New York 2005)

    Google Scholar 

  21. J. Knowles, D. Corne: Approximating the non-dominated front using the Pareto archived evolution strategy, Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  22. C.A. Coello Coello, M.S. Lechuga: Mopso: A proposal for multiple objective particle swarm optimization, IEEE Cong. Evol. Comput. (2002) pp. 1051–1056

    Google Scholar 

  23. S. Mostaghim, J. Teich: The role of $\epsilon$-dominance in multi-objective particle swarm optimization methods, IEEE Cong. Evol. Comput. (2003) pp. 1764–1771

    Google Scholar 

  24. J.E. Fieldsend, S. Singh: A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence, U.K Workshop Comput. Intell. (2002) pp. 37–44

    Google Scholar 

  25. X. Li: A non-dominated sorting particle swarm optimizer for multiobjective optimization, Genet. Evol. Comput. Conf. (2003) pp. 37–48

    Google Scholar 

  26. X. Li: Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function, Genet. Evol. Comput. Conf. (2004) pp. 117–128

    Google Scholar 

  27. M.R. Sierra, C.A. Coello Coello: Improving pso-based multi-objective optimization using crowding, mutation and $\epsilon$-dominance, Lect. Notes Comput. Sci. 3410, 505–519 (2005)

    Article  MATH  Google Scholar 

  28. C.R. Raquel, P.C. Naval: An effective use of crowding distance in multiobjective particle swarm optimization, Genet. Evol. Comput. Conf. (2005) pp. 257–264

    Google Scholar 

  29. C.A. Coello Coello: Handling preferences in evolutionary multiobjective optimization: A survey, IEEE Cong. Evol. Comput. (2000) pp. 30–37

    Google Scholar 

  30. L. Rachmawati, D. Srinivasan: Preference incorporation in multi-objective evolutionary algorithms: A survey, IEEE Cong. Evol. Comput. (2006) pp. 962–968

    Google Scholar 

  31. C.M. Fonseca, P.J. Fleming: Handling preferences in evolutionary multiobjective optimization: A survey, Proc. IEEE 5th Int. Conf. Genet. Algorithm (1993) pp. 416–423

    Google Scholar 

  32. K. Deb: Solving goal programming problems using multi-objective genetic algorithms, IEEE Cong. Evol. Comput. (1999) pp. 77–84

    Google Scholar 

  33. L. Thiele, P. Miettinen, P.J. Korhonen, J. Molina: A preference-based evolutionary algorithm for multobjective optimization, Evol. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  34. K. Deb, J. Sundar: Reference point based multi-objective optimization using evolutionary algorithms, Genet. Evol. Comput. Conf. (2006) pp. 635–642

    Google Scholar 

  35. K. Deb, A. Kumar: Interactive evolutionary multi-objective optimization and decision-making using reference direction method, Genet. Evol. Comput. Conf. (2007) pp. 781–788

    Google Scholar 

  36. K. Deb, A. Kumar: Light beam search based multi-objective optimization using evolutionary algorithms, Genet. Evol. Comput. Conf. (2007) pp. 2125–2132

    Google Scholar 

  37. U.K. Wickramasinghe, X. Li: Integrating user preferences with particle swarms for multi-objective optimization, Genet. Evol. Comput. Conf. (2008) pp. 745–752

    Google Scholar 

  38. U.K. Wickramasinghe, X. Li: Using a distance metric to guide pso algorithms for many-objective optimization, Genet. Evol. Comput. Conf. (2009) pp. 667–674

    Google Scholar 

  39. A.J. Keane, P.B. Nair: Computational Approaches for Aerospace Design: The Pursuit of Excellence (Wiley, New York 2005)

    Book  Google Scholar 

  40. A. Forrester, A. Sóbester, A.J. Keane: Engineering Design Via Surrogate Modelling: A Practical Guide (Wiley, New York 2008)

    Book  Google Scholar 

  41. D.R. Jones: A taxomony of global optimization methods based on response surfaces, J. Glob. Optim. 21, 345–383 (2001)

    Article  MATH  Google Scholar 

  42. Y. Jin: A comprehensive survey of fitness approximation in evolutionary computation, Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  43. R.M. Greenman, K.R. Roth: High-lift optimization design using neural networks on a multi-element airfoil, J. Fluids Eng. 121(2), 434–440 (1999)

    Article  Google Scholar 

  44. T. Kohonen: Self-Organizing Maps (Springer, Berlin, Heidelberg 1995)

    Book  MATH  Google Scholar 

  45. S. Jeong, K. Chiba, S. Obayashi: Data mining for aerodynamic design space, J. Aerosp. Comput. Inform. Commun. 2, 452–469 (2005)

    Article  Google Scholar 

  46. W. Song, A.J. Keane: A study of shape parameterisation methods for airfoil optimisation, Proc. 10th AIAA/ISSMO Multidiscip. Anal. Optim. Conf. (2004)

    Google Scholar 

  47. H. Sobjieczky: Parametric airfoils and wings, Notes Numer. Fluid Mech. 68, 71–88 (1998)

    Google Scholar 

  48. A. Jahangirian, A. Shahrokhi: Inverse design of transonic airfoils using genetic algorithms and a new parametric shape model, Invers. Probl. Sci. Eng. 17(5), 681–699 (2009)

    Article  MATH  Google Scholar 

  49. P.R. Spalart, S.R. Allmaras: A one-equation turbulence model for aerodynamic flows, Rech. Aerosp. 1, 5–21 (1992)

    Google Scholar 

  50. M. Clerc, J. Kennedy: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  51. D. Bratton, J. Kennedy: Defining a standard for particle swarm optimization, IEEE Swarm Intell. Symp. (2007) pp. 120–127

    Google Scholar 

  52. M.D. Mckay, R.J. Beckman, W.J. Conover: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Invers. Prob. Sci. Eng. 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  53. M.D. Morris: Factorial sampling plans for preliminary computational experiments, Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  54. F. Campolongo, A. Saltelli, S. Tarantola, M. Ratto: Sensitivity Analysis in Practice (Wiley, New York 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Carrese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carrese, R., Li, X. (2015). Preference-Based Multiobjective Particle Swarm Optimization for Airfoil Design. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics