Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Evolutionary algorithms (GlossaryTerm

EA

s) have amply shown their promise in solving various search and optimization problems for the past three decades. One of the hallmarks and niches of GlossaryTerm

EA

s is their ability to handle multi-objective optimization problems in their totality, which their classical counterparts lack. Suggested in the beginning of the 1990s, evolutionary multi-objective optimization (GlossaryTerm

EMO

) algorithms are now routinely used in solving problems with multiple conflicting objectives in various branches of engineering, science, and commerce. In this chapter, we provide an overview of GlossaryTerm

EMO

methodologies by first presenting principles of GlossaryTerm

EMO

through an illustration of one specific algorithm and its application to an interesting real-world bi-objective optimization problem. Thereafter, we provide a list of recent research and application developments of GlossaryTerm

EMO

to provide a picture of some salient advancements in GlossaryTerm

EMO

research. The development and application of GlossaryTerm

EMO

to multi-objective optimization problems and their continued extensions to solve other related problems has elevated GlossaryTerm

EMO

research to a level which may now undoubtedly be termed as an active field of research with a wide range of theoretical and practical research and application opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARMOGA:

adaptive range MOGA

EA:

evolutionary algorithm

EMO:

evolutionary multiobjective optimization

FEMO:

fair evolutionary multi-objective optimizer

GA:

genetic algorithm

IBEA:

indicator-based evolutionary algorithm

KKT:

Karush–Kuhn–Tucker

KUR:

Kurswae

LOTZ:

leading ones trailing zeroes

MCDA:

multi-criteria decision analysis

MCDM:

multiple criteria decision-making

MOGA:

multiobjective genetic algorithm

MOMGA:

multi-objective messy GA

NSGA:

nondominated sorting genetic algorithm

PAES:

Pareto-archived evolution strategy

PCA:

principal component analysis

PESA:

Pareto-envelope based selection algorithm

SBX:

simulated binary crossover

SEMO:

simple evolutionary multi-objective optimizer

SPEA:

strength Pareto evolutionary algorithm

VEGA:

vector-evaluated GA

ZDT:

Zitzler–Deb–Thiele

References

  1. D.E. Goldberg: Genetic Algorithms for Search, Optimization, and Machine Learning (Addison-Wesley, Reading 1989)

    MATH  Google Scholar 

  2. J.H. Holland: Adaptation in Natural and Artificial Systems (MIT, Ann Arbor 1975)

    Google Scholar 

  3. K.A. De Jong: Evolutionary Computation: A Unified Approach (MIT, Cambridge 2006)

    MATH  Google Scholar 

  4. P.J.M. Laarhoven, E.H.L. Aarts: Simulated Annealing: Theory and Applications (Springer, Heidelberg 1987)

    Book  MATH  Google Scholar 

  5. F. Glover: Tabu search - Part 1, ORSA J. Comput. 1(2), 190–206 (1989)

    Article  MATH  Google Scholar 

  6. F. Glover: Tabu search - Part 2, ORSA J. Comput. 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  7. B.S.W. Schröder: Ordered Sets: An Introduction (Birkhäuser, Boston 2003)

    Book  MATH  Google Scholar 

  8. K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester 2001)

    MATH  Google Scholar 

  9. K. Miettinen: Nonlinear Multiobjective Optimization (Kluwer, Boston 1999)

    MATH  Google Scholar 

  10. H.T. Kung, F. Luccio, F.P. Preparata: On finding the maxima of a set of vectors, J. Assoc. Comput. Mach. 22(4), 469–476 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Jahn: Vector Optimization (Springer, Berlin 2004)

    Book  MATH  Google Scholar 

  12. G. Rudolph: On a multi-objective evolutionary algorithm and its convergence to the Pareto set, Proc. 5th IEEE Conf. Evol. Comput. (1998) pp. 511–516

    Google Scholar 

  13. G. Rudolph, A. Agapie: Convergence properties of some multi-objective evolutionary algorithms, Proc. 2000 Congr. Evol. Comput. (CEC2000) (2000) pp. 1010–1016

    Google Scholar 

  14. O. Schütze, M. Laumanns, C.A.C. Coello, M. Dellnitz, E.-G. Talbi: Convergence of stochastic search algorithms to finite size Pareto set approximations, J. Glob. Optim. 41(4), 559–577 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Schütze, M. Laumanns, E. Tantar, C.A.C. Coello, E.-G. Talbi: Computing gap-free Pareto front approximations with stochastic search algorithms, Evol. Comput. J. 18(1), 65–96 (2010)

    Article  Google Scholar 

  16. K. Deb, R. Tiwari, M. Dixit, J. Dutta: Finding trade-off solutions close to KKT points using evolutionary multi-objective optimization, Proc. Congr. Evol. Comput. (CEC-2007) (2007) pp. 2109–2116

    Google Scholar 

  17. P. Shukla, K. Deb: On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods, Eur. J. Oper. Res. (EJOR) 181(3), 1630–1652 (2007)

    Article  MATH  Google Scholar 

  18. R.S. Rosenberg: Simulation of Genetic Populations with Biochemical Properties, Ph.D. Thesis (University of Michigan, Ann Arbor 1967)

    Google Scholar 

  19. L.J. Fogel, A.J. Owens, M.J. Walsh: Artificial Intelligence Through Simulated Evolution (Wiley, New York 1966)

    MATH  Google Scholar 

  20. J.D. Schaffer: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms, Ph.D. Thesis (Vanderbilt University, Nashville 1984)

    Google Scholar 

  21. D.E. Goldberg, J. Richardson: Genetic algorithms with sharing for multimodal function optimization, Proc. First Int. Conf. Genet. Algorithms Their Appl. (1987) pp. 41–49

    Google Scholar 

  22. C.M. Fonseca, P.J. Fleming: Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization, Proc. Fifth Int. Conf. Genet. Algorithms (1993) pp. 416–423

    Google Scholar 

  23. J. Horn, N. Nafploitis, D.E. Goldberg: A niched Pareto genetic algorithm for multi-objective optimization, Proc. First IEEE Conf. Evol. Comput. (1994) pp. 82–87

    Google Scholar 

  24. N. Srinivas, K. Deb: Multi-objective function optimization using non-dominated sorting genetic algorithms, Evol. Comput. J. 2(3), 221–248 (1994)

    Article  Google Scholar 

  25. C. Poloni: Hybrid GA for multi-objective aerodynamic shape optimization. In: Genetic Algorithms in Engineering and Computer Science, ed. by G. Winter, J. Periaux, M. Galan, P. Cuesta (Wiley, Chichester 1997) pp. 397–414

    Google Scholar 

  26. G. Rudolph: Convergence analysis of canonical genetic algorithms, IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    Article  Google Scholar 

  27. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan: A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  28. E. Zitzler, L. Thiele: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  29. J.D. Knowles, D.W. Corne: Approximating the non-dominated front using the Pareto archived evolution strategy, Evol. Comput. J. 8(2), 149–172 (2000)

    Article  Google Scholar 

  30. K. Deb, R.B. Agrawal: Simulated binary crossover for continuous search space, Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  31. E. Zitzler, M. Laumanns, L. Thiele: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, ed. by K.C. Giannakoglou, D.T. Tsahalis, J. Périaux, K.D. Papailiou, T. Fogarty (CIMNE, Athens 2001) pp. 95–100

    Google Scholar 

  32. D.W. Corne, J.D. Knowles, M. Oates: The Pareto envelope-based selection algorithm for multiobjective optimization, Proc. Sixth Int. Conf. Parallel Probl. Solving Nat. VI (PPSN-VI) (2000) pp. 839–848

    Google Scholar 

  33. D. Van Veldhuizen, G.B. Lamont: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art, Evol. Comput. J. 8(2), 125–148 (2000)

    Article  Google Scholar 

  34. C.A.C. Coello, G. Toscano: A Micro-Genetic Algorithm for Multi-Objective Optimization, Technical Report Lania-RI-2000-06 (Laboratoria Nacional de Informatica Avanzada, Xalapa 2000)

    Google Scholar 

  35. D.H. Loughlin, S. Ranjithan: The neighborhood constraint method: A multiobjective optimization technique, Proc. Seventh Int. Conf. Genet. Algorithms (1997) pp. 666–673

    Google Scholar 

  36. D. Sasaki, M. Morikawa, S. Obayashi, K. Nakahashi: Aerodynamic shape optimization of supersonic wings by adaptive range multiobjective genetic algorithms, Proc. First Int. Conf. Evol. Multi-Criterion Optim. (EMO 2001) (2001) pp. 639–652

    Chapter  Google Scholar 

  37. C.A.C. Coello, M.S. Lechuga: MOPSO: A proposal for multiple objective particle swarm optimization, Congr. Evol. Comput. (CEC'2002), Vol. 2 (IEEE Service Center, Piscataway 2002) pp. 1051–1056

    Google Scholar 

  38. S. Mostaghim, J. Teich: Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), 2003 IEEE Swarm Intell. Symp. Proc. (IEEE Service Center, Indianapolis 2003) pp. 26–33

    Google Scholar 

  39. P.R. McMullen: An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives, Artifi. Intell. Eng. 15, 309–317 (2001)

    Article  Google Scholar 

  40. M. Gravel, W.L. Price, C. Gagné: Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic, Eur. J. Oper. Res. 143(1), 218–229 (2002)

    Article  MATH  Google Scholar 

  41. B.V. Babu, M.L. Jehan: Differential evolution for multi-objective optimization, Proc. 2003 Congr. Evol. Comput. (CEC'2003), Vol. 4 (IEEE, Canberra 2003) pp. 2696–2703

    Chapter  Google Scholar 

  42. S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb: A simulated annealing-based multiobjective optimization algorithm: Amosa, IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  43. M.P. Hansen: Tabu search in multiobjective optimization: MOTS, Thirteenth Int. Conf. Multi-Criterion Decis. Mak. (MCDM'97) (University of Cape Town, Cape Town 1997)

    Google Scholar 

  44. C.A.C. Coello, D.A. VanVeldhuizen, G. Lamont: Evolutionary Algorithms for Solving Multi-Objective Problems (Kluwer, Boston 2002)

    Book  MATH  Google Scholar 

  45. C.A.C. Coello, G.B. Lamont: Applications of Multi-Objective Evolutionary Algorithms (World Scientific, Singapore 2004)

    Book  MATH  Google Scholar 

  46. A. Osyczka: Evolutionary Algorithms for Single and Multicriteria Design Optimization (Physica, Heidelberg 2002)

    MATH  Google Scholar 

  47. K.C. Tan, E.F. Khor, T.H. Lee: Multiobjective Evolutionary Algorithms and Applications (Springer, London 2005)

    MATH  Google Scholar 

  48. E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D.W. Corne: Evolutionary Multi-Criterion Optimization, 1st International Conference (EMO-2001), Lecture Notes in Computer Science, Vol. 1993 (Springer, Heidelberg 2001)

    Book  Google Scholar 

  49. C.M. Fonseca, P. Fleming, E. Zitzler, K. Deb, L. Thiele: Evolutionary Multi-Criterion Optimization, 2nd International Conference, (EMO-2003), Lecture Notes in Computer Science, Vol. 2632 (Springer, Heidelberg 2003)

    Book  MATH  Google Scholar 

  50. C.A.C. Coello, A.H. Aguirre, E. Zitzler: Evolutionary Multi-Criterion Optimization, 3rd International Conference (EMO-2005), Lecture Notes in Computer Science, Vol. 3410 (Springer, Heidelberg 2005)

    Book  MATH  Google Scholar 

  51. S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata: Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO-2007), Lecture Notes in Computer Science, Vol. 4403 (Springer, Heidelberg 2007)

    Book  MATH  Google Scholar 

  52. M. Ehrgott, C.M. Fonseca, X. Gandibleux, J.-K. Hao, M. Sevaux: Evolutionary Multi-Criterion Optimization, 5th International Conference (EMO-2009), Lecture Notes in Computer Science, Vol. 5467 (Springer, Heidelberg 2009)

    Book  MATH  Google Scholar 

  53. R.H.C. Takahashi, K. Deb, E.F. Wanner, S. Greco: Evolutionary Multi-Criterion Optimization, 6th International Conference (EMO-2011), Lecture Notes in Computer Science, Vol. 6576 (Springer, Heidelberg 2011)

    Book  MATH  Google Scholar 

  54. C. A. Coello: List of references on evolutionary multiobjective optimization (emo), http://www.lania.mx/~ccoello/EMOO/EMOObib.html

  55. V. Coverstone-Carroll, J.W. Hartmann, W.J. Mason: Optimal multi-objective low-thurst spacecraft trajectories, Comput. Meth. Appl. Mech. Eng. 186(2–4), 387–402 (2000)

    Article  MATH  Google Scholar 

  56. C.G. Sauer: Optimization of multiple target electric propulsion trajectories, AIAA 11th Aerosp. Sci. Meet. (1973), Paper Number 73–205

    Google Scholar 

  57. K. Deb, T. Goel: A hybrid multi-objective evolutionary approach to engineering shape design, Proc. First Int. Conf. Evol. Multi-Criterion Optim. (EMO-01) (2001) pp. 385–399

    Chapter  Google Scholar 

  58. K. Sindhya, K. Deb, K. Miettinen: A local search based evolutionary multi-objective optimization technique for fast and accurate convergence, Proc. Parallel Probl. Solving Nat. (PPSN-2008) (Springer, Berlin 2008)

    Google Scholar 

  59. H. Jin, M.-L. Wong: Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms, Proc. Congr. Evol. Comput. (CEC-2003) (2003) pp. 2498–2505

    Google Scholar 

  60. Z.M. Saul, C.A.C. Coello: A proposal to hybridize multi-objective evolutionary algorithms with non-gradient mathematical programming techniques, Proc. Parallel Probl. Solving Nat. (PPSN-2008) (2008) pp. 837–846

    Google Scholar 

  61. M. Fleischer: The measure of Pareto optima: Applications to multi-objective optimization, Proc. Second Int. Conf. Evol. Multi-Criterion Optim. (EMO-2003) (Springer, Berlin 2003) pp. 519–533

    Chapter  Google Scholar 

  62. L. While, P. Hingston, L. Barone, S. Huband: Afaster algorithm for calculating hypervolume, IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  63. L. Bradstreet, L. While, L. Barone: A fast incremental hypervolume algorithm, IEEE Trans. Evol. Comput. 12(6), 714–723 (2008)

    Article  Google Scholar 

  64. M. Laumanns, L. Thiele, K. Deb, E. Zitzler: Combining convergence and diversity in evolutionary multi-objective optimization, Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  65. P.A.N. Bosman, D. Thierens: The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  66. C.A.C. Coello: Treating objectives as constraints for single objective optimization, Eng. Optim. 32(3), 275–308 (2000)

    Article  Google Scholar 

  67. S. Bleuler, M. Brack, E. Zitzler: Multiobjective genetic programming: Reducing bloat using SPEA2, Proc. 2001 Congr. Evol. Comput. (2001) pp. 536–543

    Google Scholar 

  68. E.D. De Jong, R.A. Watson, J.B. Pollack: Reducing bloat and promoting diversity using multi-objective methods, Proc. Genet. Evol. Comput. Conf. (GECCO-2001) (2001) pp. 11–18

    Google Scholar 

  69. J. Handl, J.D. Knowles: An evolutionary approach to multiobjective clustering, IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  70. F. Neumann, I. Wegener: Minimum spanning trees made easier via multi-objective optimization, GECCO'05: Proc. 2005 Conf. Genetic Evol. Comput. (ACM, New York 2005) pp. 763–769

    Chapter  Google Scholar 

  71. J.D. Knowles, D.W. Corne, K. Deb: Multiobjective Problem Solving from Nature, Springer Natural Computing Series (Springer, Heidelberg 2008)

    Book  MATH  Google Scholar 

  72. K. Deb, S. Gupta, D. Daum, J. Branke, A. Mall, D. Padmanabhan: Reliability-based optimization using evolutionary algorithms, IEEE Trans. Evol. Comput. 13(5), 1054–1074 (2009)

    Article  Google Scholar 

  73. K. Deb, H. Gupta: Introducing robustness in multi-objective optimization, Evol. Comput. J. 14(4), 463–494 (2006)

    Article  Google Scholar 

  74. M. Basseur, E. Zitzler: Handling uncertainty in indicator-based multiobjective optimization, Int. J. Comput. Intell. Res. 2(3), 255–272 (2006)

    MathSciNet  Google Scholar 

  75. T.R. Cruse: Reliability-Based Mechanical Design (Marcel Dekker, New York 1997)

    Google Scholar 

  76. X. Du, W. Chen: Sequential optimization and reliability assessment method for efficient probabilistic design, ASME Trans. J. Mech. Des. 126(2), 225–233 (2004)

    Article  Google Scholar 

  77. J. Branke, K. Deb, H. Dierolf, M. Osswald: Finding knees in multi-objective optimization, Lect. Notes Comput. Sci. 3242, 722–731 (2004)

    Article  Google Scholar 

  78. A.P. Wierzbicki: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Applications, ed. by G. Fandel, T. Gal (Springer, Berlin 1980) pp. 468–486

    Chapter  Google Scholar 

  79. P. Korhonen, J. Laakso: A visual interactive method for solving the multiple criteria problem, Eur. J. Oper. Res. 24, 277–287 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Branke, K. Deb, K. Miettinen, R. Slowinski: Multiobjective Optimization: Interactive and Evolutionary Approaches (Springer, Berlin 2008)

    Book  MATH  Google Scholar 

  81. K. Deb, J. Sundar, N. Uday, S. Chaudhuri: Reference point based multi-objective optimization using evolutionary algorithms, Int. J. Comput. Intell. Res. (IJCIR) 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  82. K. Deb, A. Kumar: Light beam search based multi-objective optimization using evolutionary algorithms, Proc. Congr. Evol. Comput. (CEC-07) (2007) pp. 2125–2132

    Google Scholar 

  83. K. Deb, A. Kumar: Interactive evolutionary multi-objective optimization and decision-making using reference direction method, Proc. Genet. Evol. Comput. Conf. (GECCO-2007) (ACM, New York 2007) pp. 781–788

    Google Scholar 

  84. L. Thiele, K. Miettinen, P. Korhonen, J. Molina: A Preference-Based Interactive Evolutionary Algorithm for Multiobjective Optimization, Technical Report Working Paper W-412 (Helsingin School of Economics, Helsingin Kauppakorkeakoulu 2007)

    Google Scholar 

  85. M. Luque, K. Miettinen, P. Eskelinen, F. Ruiz: Incorporating preference information in interactive reference point based methods for multiobjective optimization, Omega 37(2), 450–462 (2009)

    Article  Google Scholar 

  86. V. Khare, X. Yao, K. Deb: Performance scaling of multi-objective evolutionary algorithms, Lect. Notes Comput. Sci. 2632, 376–390 (2003)

    Article  MATH  Google Scholar 

  87. J. Knowles, D. Corne: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization, Lect. Notes Comput. Sci. 4403, 757–771 (2007)

    Article  Google Scholar 

  88. J.A. López, C.A.C. Coello: Some techniques to deal with many-objective problems, Proc. 11th Annu. Conf. Companion Genet. Evol. Comput. Conf. (ACM, New York 2009) pp. 2693–2696

    Google Scholar 

  89. E.J. Hughes: Evolutionary many-objective optimisation: Many once or one many?, IEEE Congr. Evol. Comput. (CEC-2005) (2005) pp. 222–227

    Chapter  Google Scholar 

  90. D.K. Saxena, J.A. Duro, A. Tiwari, K. Deb, Q. Zhang: Objective reduction in many-objective optimization: Linear and nonlinear algorithms, IEEE Trans. Evol. Comput. 17(1), 77–99 (2013)

    Article  Google Scholar 

  91. K. Deb, H. Jain: An Improved NSGA-II Procedure for Many-Objective Optimization, Part I: Problems with Box Constraints, Tech. Rep. KanGAL Report, Vol. 2012009 (Indian Institute of Technology, Kanpur 2012)

    Google Scholar 

  92. K. Deb, H. Jain: An Improved NSGA-II Procedure for Many-Objective Optimization, Part II: Handling Constraints and Extending to an Adaptive Approach, Tech. Rep. KanGAL Report, Vol. 2012010 (Indian Institute of Technology, Kanpur 2012)

    Google Scholar 

  93. K. Deb, H. Jain: Handling many-objective problems using an improved NSGA-II procedure, Proc. World Congr. Comput. Intell. (WCCI-2012) (2012)

    Google Scholar 

  94. Q. Zhang, H. Li: MOEA/D: A multiobjective evolutionary algorithm based on decomposition, Evol. Comput. IEEE Trans. 11(6), 712–731 (2007)

    Article  Google Scholar 

  95. J. Branke, K. Deb: Integrating user preferences into evolutionary multi-objective optimization. In: Knowledge Incorporation in Evolutionary Computation, ed. by Y. Jin (Springer, Heidelberg 2004) pp. 461–477

    Google Scholar 

  96. K. Deb, P. Zope, A. Jain: Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms, Lect. Notes Comput. Sci. 2632, 535–549 (2003)

    MATH  Google Scholar 

  97. K. Deb, D. Saxena: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems, Proc. World Congr. Comput. Intell. (WCCI-2006) (2006) pp. 3352–3360

    Google Scholar 

  98. D.K. Saxena, K. Deb: Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding, Proc. Fourth Int. Conf. Evol. Multi-Criterion Optim. (EMO-2007) (2007) pp. 772–787

    Chapter  Google Scholar 

  99. D. Brockhoff, E. Zitzler: Dimensionality reduction in multiobjective optimization: The minimum objective subset problem. In: Operations Research Proceedings 2006, ed. by K.H. Waldmann, U.M. Stocker (Springer, Heidelberg 2007) pp. 423–429

    Chapter  Google Scholar 

  100. D. Brockhoff, E. Zitzler: Offline and Online Objective Reduction in Evolutionary Multiobjective Optimization Based on Objective Conflicts, TIK Report, Vol. 269 (Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich 2007)

    MATH  Google Scholar 

  101. M. Farina, P. Amato: A fuzzy definition of optimality for many criteria optimization problems, IEEE Trans. Syst., Man Cybern. Part A: Syst, Hum. 34(3), 315–326 (2004)

    Google Scholar 

  102. K. Deb, A. Srinivasan: Innovization: Innovating design principles through optimization, Proc. Genet. Evol. Comput. Conf. (GECCO-2006) (ACM, New York 2006) pp. 1629–1636

    Google Scholar 

  103. S. Bandaru, K. Deb: Towards automating the discovery of certain innovative design principles through a clustering based optimization technique, Eng. Optim. 43(9), 1–941 (2011)

    Article  MathSciNet  Google Scholar 

  104. S. Bandaru, K. Deb: Automated innovization for simultaneous discovery of multiple rules in bi-objective problems, Proc. Sixth Int. Conf. Evol. Multi-Criterion Optim. (EMO-2011) (Springer, Heidelberg 2011) pp. 1–15

    Chapter  Google Scholar 

  105. J. Branke: Evolutionary Optimization in Dynamic Environments (Springer, Heidelberg 2001)

    MATH  Google Scholar 

  106. K. Deb, U.B. Rao, S. Karthik: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling bi-objective optimization problems, Proc. Fourth Int. Conf. Evol. Multi-Criterion Optim. (EMO-2007) (2007)

    Google Scholar 

  107. K. Deb: Multi-objective genetic algorithms: Problem difficulties and construction of test problems, Evol. Comput. J. 7(3), 205–230 (1999)

    Article  Google Scholar 

  108. K. Deb, L. Thiele, M. Laumanns, E. Zitzler: Scalable test problems for evolutionary multi-objective optimization. In: Evolutionary Multiobjective Optimization, ed. by A. Abraham, L. Jain, R. Goldberg (Springer, London 2005) pp. 105–145

    Chapter  Google Scholar 

  109. S. Huband, L. Barone, L. While, P. Hingston: A scalable multi-objective test problem toolkit, Proc. Evol. Multi-Criterion Optim. (EMO-2005) (Springer, Berlin 2005)

    Google Scholar 

  110. T. Okabe, Y. Jin, M. Olhofer, B. Sendhoff: On test functions for evolutionary multi-objective optimization, Parallel Problem Solving from Nature (PPSN VIII) (2004) pp. 792–802

    Google Scholar 

  111. J.D. Knowles, D.W. Corne: On metrics for comparing nondominated sets, Congr. Evol. Comput. (CEC-2002) (IEEE, Piscataway 2002) pp. 711–716

    Google Scholar 

  112. M. P. Hansen, A. Jaskiewicz: Evaluating the Quality of Aapproximations to the Non-Dominated Set, Technical Report IMM-REP-1998-7 (Institute of Mathematical Modelling, Technical University of Denmark, Lyngby 1998)

    Google Scholar 

  113. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Fonseca: Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  114. E. Zitzler, S. Künzli: Indicator-based selection in multiobjective search, Lect. Notes Comput. Sci. 3242, 832–842 (2004)

    Article  Google Scholar 

  115. C.M. Fonseca, P.J. Fleming: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Parallel Problem Solving from Nature (PPSN IV), ed. by H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Springer, Berlin 1996), pp. 584–593, Also available as Lecture Notes in Computer Science Vol. 1141

    Google Scholar 

  116. C.M. Fonseca, V. da Grunert Fonseca, L. Paquete: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function, Third Int. Conf. Evol. Multi-Criterion Optim. (EMO-2005) (Springer, Berlin 2005) pp. 250–264

    Chapter  Google Scholar 

  117. A. Auger, J. Bader, D. Brockhoff: Theoretically investigating optimal μ-distributions for the hypervolume indicator: First results for three objectives, Lect. Notes Comput. Sci. 6238, 586–596 (2010)

    Google Scholar 

  118. J. Bader, K. Deb, E. Zitzler: Faster hypervolume-based search using monte carlo sampling, Lect. Notes Econ. Math. Syst. 634, 313–326 (2010)

    Article  MATH  Google Scholar 

  119. M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, K. Deb: Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem, Proc. Seventh Conf. Parallel Probl. Solving Nat. (PPSN-VII) (2002) pp. 44–53

    Google Scholar 

  120. O. Giel: Expected runtimes of a simple multi-objective evolutionary algorithm, Proc. Congr. Evol. Comput. (CEC-2003) (IEEE, Piscatway 2003) pp. 1918–1925

    Google Scholar 

  121. M. Laumanns, L. Thiele, E. Zitzler: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions, IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

    Article  MATH  Google Scholar 

  122. O. Giel, P.K. Lehre: On the effect of populations in evolutionary multi-objective optimization, Proc. 8th Annu. Genet. Evol. Comput. Conf. (GECCO 2006) (ACM, New York 2006) pp. 651–658

    Google Scholar 

  123. R. Kumar, N. Banerjee: Analysis of a multiobjective evolutionary algorithm on the 0-1 knapsack problem, Theor. Comput. Sci. 358(1), 104–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  124. M.A. El-Beltagy, P.B. Nair, A.J. Keane: Metamodelling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations, Proc. Genet. Evol. Comput. Conf. (GECCO-1999) (Morgan Kaufman, San Mateo 1999) pp. 196–203

    Google Scholar 

  125. K.C. Giannakoglou: Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence, Prog. Aerosp. Sci. 38(1), 43–76 (2002)

    Article  Google Scholar 

  126. P.K.S. Nain, K. Deb: Computationally effective search and optimization procedure using coarse to fine approximations, Proc. Congr. Evol. Comput. (CEC-2003) (2003) pp. 2081–2088

    Google Scholar 

  127. K. Deb, P.K.S. Nain: An Evolutionary Multi-Objective Adaptive Meta-Modeling Procedure Using Artificial Neural Networks (Springer, Berlin 2007) pp. 297–322

    Google Scholar 

  128. M. Emmerich, K.C. Giannakoglou, B. Naujoks: Single and multiobjective evolutionary optimization assisted by gaussian random field metamodels, IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)

    Article  Google Scholar 

  129. M. Emmerich, B. Naujoks: Metamodel-assisted multiobjective optimisation strategies and their application in airfoil design, Adaptive Computing in Design and Manufacture VI (Springer, London 2004) pp. 249–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deb, K. (2015). Multi-Objective Evolutionary Algorithms. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics