Abstract
The goal of multiobjective evolutionary optimization is to determine a set of solutions that satisfies certain optimality properties. Recently, there is a growing number of very competitive search algorithms that are based on an explicit formulation of the optimization goal as a set property, i. e., they build on the concept of set indicators. These indicators are used to guide the selection process which is usually denoted as indicator-based selection. This major breakthrough leads to several advantages in terms of analysis and algorithm design: Algorithms are conceptually simpler and more robust as they are largely based on a single indicator; certain convergence properties can be proven; the optimization criterion is made explicit; by changing the set indicator, it is possible to explicitly consider preferences of a user. The chapter introduces step-by-step the concept of set indicators and their use in indicator-based selection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- IBEA:
-
indicator-based evolutionary algorithm
- NSGA:
-
nondominated sorting genetic algorithm
- SPAM:
-
set preference algorithm for multiobjective optimization
- SPEA:
-
strength Pareto evolutionary algorithm
References
K. Deb, S. Agrawal, A. Pratap, T. Meyarivan: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, Lect. Notes Comput. Sci. 1917, 849–858 (2000)
E. Zitzler, M. Laumanns, L. Thiele: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, Evol. Methods Des. Optim. Control Appl. Ind. Probl. (2002) pp. 95–100
M. Laumanns, L. Thiele, K. Deb, E. Zitzler: Combining convergence and diversity in evolutionary multiobjective optimization, Evol. Comput. 10(3), 263–282 (2002)
T. Wagner, N. Beume, B. Naujoks: Pareto-, aggregation-, and indicator-based methods in many-objective optimization, Lect. Notes Comput. Sci. 4403, 742–756 (2007)
E. Zitzler, L. Thiele, J. Bader: On set-based multiobjective optimization, IEEE Trans. Evol. Comput. 14(1), 58–79 (2010)
V. da Grunert Fonseca, C.M. Fonseca, A.O. Hall: Inferential performance assessment of stochastic optimisers and the attainment function, Conf. Evol. Multi-Criterion Optim. (EMO 2001), ed. by E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coelle, D. Corne (Springer, Berlin, Zurich 2001) pp. 213–225
J. Knowles, D. Corne: On metrics for comparing non-dominated sets, Conf. Evol. Comput. (2002) pp. 711–716
D.A. Van Veldhuizen, G.B. Lamont: On measuring multiobjective evolutionary algorithm performance, Congr. Evol. Comput. (2000) pp. 204–211
E. Zitzler, L. Thiele: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
M. Fleischer: The measure of Pareto optima. Applications to multi-objective metaheuristics, Conf. Evol. Multi-Criterion Optim. (2003) pp. 519–533
E. Zitzler, S. Künzli: Indicator-based selection in multiobjective search, Lect. Notes Comput. Sci. 3242, 832–842 (2004)
M. Emmerich, N. Beume, B. Naujoks: An EMO algorithm using the hypervolume measure as selection criterion, Evol. Multi-Criterion Optim. 3rd Int. Conf. (2005) pp. 62–76
C. Igel, N. Hansen, S. Roth: Covariance matrix adaptation for multi-objective optimization, Evol. Comput. 15(1), 1–28 (2007)
J.D. Knowles, D. Corne: Properties of an adaptive archiving algorithm for storing nondominated vectors, IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)
E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. da Grunert Fonseca: Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
M.P. Hansen, A. Jaszkiewicz: Evaluating the Quality of Approximations to the Non-dominated Set, Tech. Rep. IMM-REP-1998-7 (Technical Univ. of Denmark, Lyngby 2010) pp. 1–31
C.H. Papadimitriou, M. Yannakakis: On the approximability of trade-offs and optimal access of web sources, 41st Annu. Symp. Found. Comput. Sci. (2000) pp. 86–92
K. Bringmann, T. Friedrich: The maximum hypervolume set yields near-optimal approximation, Genet. Evol. Comput. Conf. (2010) pp. 511–518
E. Zitzler, L. Thiele: Multiobjective optimization using evolutionary algorithms – A comparative case study, Lect. Notes Comput. Sci. 1498, 292–304 (1998)
K. Bringmann, T. Friedrich: Approximating the volume of unions and intersections of high-dimensional geometric objects, Lect. Notes Comput. Sci. 5369, 436–447 (2008)
C.M. Fonseca, L. Paquete, M. López-Ibáñez: An improved dimension-sweep algorithm for the hypervolume indicator, Congr. Evol. Comput. (2006) pp. 1157–1163
N. Beume: S-Metric calculation by considering dominated hypervolume as Klee's measure problem, Evol. Comput. 17(4), 477–492 (2009)
K. Bringmann, T. Friedrich: S-Metric calculation by considering dominated hypervolume as Klee's measure problem, Comput. Geom. 43(6/7), 601–610 (2010)
L. Thiele, K. Miettinen, P.J. Korhonen, J. Molina: A preference-based evolutionary algorithm for multi-objective optimization, Evol. Comput. 17(3), 411–436 (2009)
K. Bringmann, T. Friedrich, F. Neumann, M. Wagner: Approximation-guided evolutionary multi-objective optimization, Proc. 22nd Int. Jt. Conf. Artif. Intell. (2011) pp. 1198–1203
E. Zitzler, L. Thiele, J. Bader: SPAM: Set preference algorithm for multiobjective optimization, Lect. Notes Comput. Sci. 5199, 847–858 (2008)
G. Rudolph, A. Agapie: Convergence properties of some multi-objective evolutionary algorithms, Congr. Evol. Comput. (2000) pp. 1010–1016
K. Bringmann, T. Friedrich: Convergence of hypervolume-based archiving algorithms I: Effectiveness, 13th Annu. Genet. Evol. Comput. Conf. (2011) pp. 745–752
K. Bringmann, T. Friedrich: An efficient algorithm for computing hypervolume contributions, Evol. Comput. 18(3), 383–402 (2010)
K. Bringmann, T. Friedrich: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice, evolutionary multi-criterion optimization, Lect. Notes Comput. Sci. 5467, 6–20 (2009)
J. Bader, E. Zitzler: HypE: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput. 19(1), 45–76 (2011)
N. Srinivas, K. Deb: Multiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2(3), 221–248 (1994)
D.E. Goldberg: Multiobjective optimization. In: Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading 1989) pp. 197–201
C.M. Fonseca, P.J. Fleming: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization, Proc. 5th Conf. Genet. Algorithms (1993) pp. 416–423
J. Bader: Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods, Ph.D. Thesis (CreateSpace, ETH Zurich 2010)
E. Zitzler, K. Deb, L. Thiele: Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput. 8(2), 173–195 (2000)
C.A. Coello Coello: Handling preferences in evolutionary multiobjective optimization: A survey, Congr. Evol. Comput. (2000) pp. 30–37
K. Deb, J. Sundar: Reference point based multi-objective optimization using evolutionary algorithms, Genet. Evol. Comput. Conf. (2006) pp. 635–642
A. Auger, J. Bader, D. Brockhoff, E. Zitzler: Articulating user preferences in many-objective problems by sampling the weighted hypervolume, Genet. Evol. Comput. Conf. (2009) pp. 555–562
A. Wierzbicki: The use of reference objectives in multiobjective optimization, Lect. Notes Econ. Math. Syst. 177, 468–486 (1980)
E. Zitzler, D. Brockhoff, L. Thiele: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration, Lect. Notes Comput. Sci. 4403, 862–876 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Thiele, L. (2015). Indicator-Based Selection. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_48
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)