Abstract
Only within the past few decades have we had the tools capable of probing the brain to search for the fundamental components of cognition. Modern numerical techniques coupled with the fabrication of precise electronics have allowed us to identify the very substrates of our own minds. The pioneering work of Hodgkin and Huxley provided us with the first biologically validated mathematical model describing the flow of ions across the membranes of giant squid axon. This model demonstrated the fundamental principles underlying how the electrochemical potential difference, maintained across the neuronal membrane, can serve as a medium for signal transmission. This early model has been expanded and improved to include elements not originally described through collaboration between biologists, computer scientists, physicists and mathematicians. Multi-disciplinary efforts are required to understand this system that spans multiple orders of magnitude and involves diverse cellular signaling cascades. The massive amount of data published concerning specific functionality within neural networks is currently one of the major challenges faced in neuroscience. The diverse and sometimes disparate data collected across many laboratories must be collated into the same framework before we can transition to a general theory explaining the brain. Since this broad field would typically be the subject of its own textbook, here we will focus on the fundamental physical relationships that can be used to understand biological processes in the brain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- ATP:
-
adenosine triphosphate
- BBB:
-
blood brain barrier
- CNS:
-
central nervous system
- DNA:
-
deoxyribonucleic acid
- GABA:
-
gamma-aminobutyric acid
- GFP:
-
green fluorescent protein
- GPCR:
-
g-protein coupled receptor
- HH:
-
Hodgkin–Huxley
- INCF:
-
International Neuroinformatics Coordinating Facility
- NeuN:
-
neuronal nuclei antibody
- PNS:
-
peripheral nervous system
- RFP:
-
red fluorescent protein
- SRM:
-
spike response model
References
E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth: Principles of Neural Science, 5th edn. (McGraw-Hill, New York 2013)
M.L. Hines, N.T. Carnevale: Neuron: A tool for neuroscientists, Neuroscientist 7(2), 123–135 (2001)
N. Baumann, D. Pham-Dinh: Biology of oligodendrocyte and myelin in the mammalian central nervous system, Physiol. Rev. 81(2), 871–927 (2001)
R. Brette, M. Rudolphy, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., M. Zirpe, T. Natschläger, D. Pecevski, A.B. Ermentrout, M. Djurfeldt, A. Cansner, O. Rochel, T. Vieville, E. Mulles, A.P. Davison, S. El Boustani, A. Destexhe, J. Harris, C. Frederick, B. Ermentrout: Simulation of networks of spiking neurons: A review of tools and strategies, J. Comput. Neurosci. 23(3), 349–398 (2007)
E.R. Kandel, J.H. Schwartz: Molecular biology of learning: Modulation of transmitter release, Science 218(4571), 433–443 (1982)
N.T. Carnevale, M.L. Hines: The NEURON Book (Cambridge Univ. Press, Cambridge 2006)
J. Chen: A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns, Neural Comput. 22(4), 1086–1111 (2010)
J. Crank, A.B. Crowley: On an implicit scheme for the isotherm migration method along orthogonal flow lines in two dimensions, Int. J. Heat Mass Transf. 22(10), 1331–1337 (1979)
R.J. Douglas, K.A.C. Martin: Recurrent neuronal circuits in the neocortex, Curr. Biol. 17(13), R496–500 (2007)
W. Gerstner: Time structure of the activity in neural network models, Phys. Rev. E 51(1), 738–758 (1995)
W. Gerstner, R. Naud: How good are neuron models?, Science 326(5951), 379–380 (2009)
S. Grillner: The motor infrastructure: From ion channels to neuronal networks, Nat. Rev. Neurosci. 4(7), 573–586 (2003)
A.L. Hodgkin, A.F. Huxley: Propagation of electrical signals along giant nerve fibres, Proc. R. Soc. B 140(899), 177–183 (1952)
R. Jolivet, T.J. Lewis, W. Gerstner: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy, J. Neurophysiol. 92(2), 959–976 (2004)
K.M. Stiefel, J.T. Sejnowski: Mapping function onto neuronal morphology, J. Neurophysiol. 98(1), 513–526 (2007)
C.L. Kutscher: Chemical transmission in the mammalian nervous system, Neurosci. Biobehav. Rev. 2(2), 123–124 (1978)
L.F. Abbott: Modulation of function and gated learning in a network memory, Proc. Natl. Acad. Sci. USA 87(23), 9241–9245 (1990)
S.B. Laughlin, T.J. Sejnowski: Communication in neuronal networks, Science 301(5641), 1870–1874 (2003)
P. Lledo, G. Gheusi, J. Vincent: Information processing in the mammalian olfactory system, Physiol. Rev. 85(1), 281–317 (2005)
M.L. Hines, N.T. Carnevale: The NEURON simulation environment, Neural Comput. 9(6), 1179–1209 (1997)
A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, Bull. Math. Biol. 52(1), 25–71 (1990)
W.W. Lytton: Adapting a feedforward heteroassociative network to Hodgkin–Huxley dynamics, J. Comput. Neurosci. 5(4), 353–364 (1998)
W.W. Lytton: Optimizing synaptic conductance calculation for network simulations, Neural Comput. 8(3), 501–509 (1996)
M. Migliore, C. Cannia, W.W. Lytton, H. Markram, M.L. Hines: Parallel network simulations with NEURON, J. Comput. Neurosci. 21(2), 119–129 (2006)
Y. Sun, D. Zhou, A.V. Rangan, D. Cai: Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation, J. Comput. Neurosci. 27(3), 369–390 (2009)
X. Wang: Decision making in recurrent neuronal circuits, Neuron 60(2), 215–234 (2008)
J.J. Hopfield: Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA 79(8), 2554–2558 (1982)
J.L. Feldman, J.D. Cowan: Large-scale activity in neural nets I: Theory with applications to motoneuron pool, Biol. Cybern. 17(1), 29–38 (1975)
W. Gerstner, W. Kistler: Spiking Neuron Models (Cambridge Univ. Press, Cambridge 2002)
R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, W. Gerstner: A benchmark test for a quantitative assessment of simple neuron models, J. Neurosci. Methods 169, 417–424 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Stratton, H., Si, J. (2015). Computational Neuroscience – Biophysical Modeling of Neural Systems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)