Skip to main content

Computational Neuroscience – Biophysical Modeling of Neural Systems

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

  • 11k Accesses

Abstract

Only within the past few decades have we had the tools capable of probing the brain to search for the fundamental components of cognition. Modern numerical techniques coupled with the fabrication of precise electronics have allowed us to identify the very substrates of our own minds. The pioneering work of Hodgkin and Huxley provided us with the first biologically validated mathematical model describing the flow of ions across the membranes of giant squid axon. This model demonstrated the fundamental principles underlying how the electrochemical potential difference, maintained across the neuronal membrane, can serve as a medium for signal transmission. This early model has been expanded and improved to include elements not originally described through collaboration between biologists, computer scientists, physicists and mathematicians. Multi-disciplinary efforts are required to understand this system that spans multiple orders of magnitude and involves diverse cellular signaling cascades. The massive amount of data published concerning specific functionality within neural networks is currently one of the major challenges faced in neuroscience. The diverse and sometimes disparate data collected across many laboratories must be collated into the same framework before we can transition to a general theory explaining the brain. Since this broad field would typically be the subject of its own textbook, here we will focus on the fundamental physical relationships that can be used to understand biological processes in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

BBB:

blood brain barrier

CNS:

central nervous system

DNA:

deoxyribonucleic acid

GABA:

gamma-aminobutyric acid

GFP:

green fluorescent protein

GPCR:

g-protein coupled receptor

HH:

Hodgkin–Huxley

INCF:

International Neuroinformatics Coordinating Facility

NeuN:

neuronal nuclei antibody

PNS:

peripheral nervous system

RFP:

red fluorescent protein

SRM:

spike response model

References

  1. E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth: Principles of Neural Science, 5th edn. (McGraw-Hill, New York 2013)

    Google Scholar 

  2. M.L. Hines, N.T. Carnevale: Neuron: A tool for neuroscientists, Neuroscientist 7(2), 123–135 (2001)

    Article  Google Scholar 

  3. N. Baumann, D. Pham-Dinh: Biology of oligodendrocyte and myelin in the mammalian central nervous system, Physiol. Rev. 81(2), 871–927 (2001)

    Google Scholar 

  4. R. Brette, M. Rudolphy, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., M. Zirpe, T. Natschläger, D. Pecevski, A.B. Ermentrout, M. Djurfeldt, A. Cansner, O. Rochel, T. Vieville, E. Mulles, A.P. Davison, S. El Boustani, A. Destexhe, J. Harris, C. Frederick, B. Ermentrout: Simulation of networks of spiking neurons: A review of tools and strategies, J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  5. E.R. Kandel, J.H. Schwartz: Molecular biology of learning: Modulation of transmitter release, Science 218(4571), 433–443 (1982)

    Article  Google Scholar 

  6. N.T. Carnevale, M.L. Hines: The NEURON Book (Cambridge Univ. Press, Cambridge 2006)

    Book  Google Scholar 

  7. J. Chen: A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns, Neural Comput. 22(4), 1086–1111 (2010)

    Article  MATH  Google Scholar 

  8. J. Crank, A.B. Crowley: On an implicit scheme for the isotherm migration method along orthogonal flow lines in two dimensions, Int. J. Heat Mass Transf. 22(10), 1331–1337 (1979)

    Article  MATH  Google Scholar 

  9. R.J. Douglas, K.A.C. Martin: Recurrent neuronal circuits in the neocortex, Curr. Biol. 17(13), R496–500 (2007)

    Article  Google Scholar 

  10. W. Gerstner: Time structure of the activity in neural network models, Phys. Rev. E 51(1), 738–758 (1995)

    Article  MathSciNet  Google Scholar 

  11. W. Gerstner, R. Naud: How good are neuron models?, Science 326(5951), 379–380 (2009)

    Article  Google Scholar 

  12. S. Grillner: The motor infrastructure: From ion channels to neuronal networks, Nat. Rev. Neurosci. 4(7), 573–586 (2003)

    Article  Google Scholar 

  13. A.L. Hodgkin, A.F. Huxley: Propagation of electrical signals along giant nerve fibres, Proc. R. Soc. B 140(899), 177–183 (1952)

    Article  Google Scholar 

  14. R. Jolivet, T.J. Lewis, W. Gerstner: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy, J. Neurophysiol. 92(2), 959–976 (2004)

    Article  Google Scholar 

  15. K.M. Stiefel, J.T. Sejnowski: Mapping function onto neuronal morphology, J. Neurophysiol. 98(1), 513–526 (2007)

    Article  Google Scholar 

  16. C.L. Kutscher: Chemical transmission in the mammalian nervous system, Neurosci. Biobehav. Rev. 2(2), 123–124 (1978)

    Article  Google Scholar 

  17. L.F. Abbott: Modulation of function and gated learning in a network memory, Proc. Natl. Acad. Sci. USA 87(23), 9241–9245 (1990)

    Article  Google Scholar 

  18. S.B. Laughlin, T.J. Sejnowski: Communication in neuronal networks, Science 301(5641), 1870–1874 (2003)

    Article  Google Scholar 

  19. P. Lledo, G. Gheusi, J. Vincent: Information processing in the mammalian olfactory system, Physiol. Rev. 85(1), 281–317 (2005)

    Article  Google Scholar 

  20. M.L. Hines, N.T. Carnevale: The NEURON simulation environment, Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  21. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, Bull. Math. Biol. 52(1), 25–71 (1990)

    Article  Google Scholar 

  22. W.W. Lytton: Adapting a feedforward heteroassociative network to Hodgkin–Huxley dynamics, J. Comput. Neurosci. 5(4), 353–364 (1998)

    Article  MATH  Google Scholar 

  23. W.W. Lytton: Optimizing synaptic conductance calculation for network simulations, Neural Comput. 8(3), 501–509 (1996)

    Article  Google Scholar 

  24. M. Migliore, C. Cannia, W.W. Lytton, H. Markram, M.L. Hines: Parallel network simulations with NEURON, J. Comput. Neurosci. 21(2), 119–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Sun, D. Zhou, A.V. Rangan, D. Cai: Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation, J. Comput. Neurosci. 27(3), 369–390 (2009)

    Article  MathSciNet  Google Scholar 

  26. X. Wang: Decision making in recurrent neuronal circuits, Neuron 60(2), 215–234 (2008)

    Article  Google Scholar 

  27. J.J. Hopfield: Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  28. J.L. Feldman, J.D. Cowan: Large-scale activity in neural nets I: Theory with applications to motoneuron pool, Biol. Cybern. 17(1), 29–38 (1975)

    Article  MATH  Google Scholar 

  29. W. Gerstner, W. Kistler: Spiking Neuron Models (Cambridge Univ. Press, Cambridge 2002)

    Book  MATH  Google Scholar 

  30. R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, W. Gerstner: A benchmark test for a quantitative assessment of simple neuron models, J. Neurosci. Methods 169, 417–424 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrison Stratton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stratton, H., Si, J. (2015). Computational Neuroscience – Biophysical Modeling of Neural Systems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics