Abstract
This chapter reviews three formulations of rough set theory, i. e., element-based definition, granule-based definition, and subsystem-based definition. These formulations are adopted to generalize rough sets from three directions. The first direction is to use an arbitrary binary relation to generalize the equivalence relation in the element-based definition. The second is to use a covering to generalize the partition in the granule-based definition, and the third to use a subsystem to generalize the Boolean algebra in the subsystem-based definition. In addition, we provide some insights into the theoretical aspects of these generalizations, mainly with respect to relations with non-classical logic and topology theory.
Keywords
- Rough Set (RS)
- Arbitrary Binary Relation
- Covering-based Rough Sets
- Dual Approximation Operators
- Pair Approximation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- DAL:
-
logic for data analysis
- NIL:
-
nondeterministic information logic
References
Z. Pawlak: Rough sets, Int. J. Parallel Program. 11(5), 341–356 (1982)
Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning About Data (Kluwer, Dordrecht 1991)
Y.Y. Yao: Two views of the theory of rough sets in finite universes, Int. J. Approx. Reason. 15(4), 291–317 (1996)
Y.Y. Yao, B.X. Yao: Covering based rough set approximations, Inf. Sci. 200, 91–107 (2012)
Y.Y. Yao: On generalizing rough set theory, Proc. Int. Conf. Rough Sets Fuzzy Sets Data Min. Granul. Comput. (Springer, Berlin Heidelberg 2003) pp. 44–51
Y.Y. Yao, T.Y. Lin: Generalization of rough sets using modal logic, Intell. Autom. Soft Comput. 2(2), 103–120 (1996)
Y.Y. Yao: On generalizing Pawlak approximation operators, Proc. Int. Conf. Rough Sets Curr. Trends Comput. (Springer, Berlin Heidelberg 1998) pp. 298–307
Y.Y. Yao, T. Wang: On rough relations: An alternative formulation, Proc. Int. Conf. New Dir. Rough Sets Data Min. and Granul.-Soft Comput. (Springer, Berlin Heidelberg 1999) pp. 82–90
U. Wybraniec-Skardowska: On a generalization of approximation space, Bull. Pol. Acad. Sci. Math. 37(1-6), 51–62 (1989)
Z. Pawlak: Hard and soft sets, Rough Sets, Proc. Int. Workshop Rough Sets Knowl. Discov. (Springer, London 1994) pp. 130–135
Y.Y. Yao, X. Li, T.Y. Lin, Q. Liu: Representation and classification of rough set models, Proc. Int. Workshop Rough Sets Soft Comput. (SCS: Society for Computer Simulation, San Diego 1995) pp. 44–47
R. Slowinski, D. Vanderpooten: A generalized definition of rough approximations based on similarity, Knowl. Data Eng., IEEE Trans. 12(2), 331–336 (2000)
S. Greco, B. Matarazzo, R. Slowinski: Fuzzy similarity relation as a basis for rough approximations, Proc. Int. Conf. Rough Sets Curr. Trends Comput. (Springer, Berlin Heidelberg 1998) pp. 283–289
L.H. Guan, G.Y. Wang: Generalized approximations defined by non-equivalence relations, Inf. Sci. 193, 163–179 (2012)
Y.Y. Yao: Relational interpretations of neighborhood operators and rough set approximation operators, Inf. Sci. 111(1), 239–259 (1998)
W.Z. Wu, W.X. Zhang: Neighborhood operator systems and approximations, Inf. Sci. 144(1), 201–217 (2002)
H.M. Abu-Donia: Comparison between different kinds of approximations by using a family of binary relations, Knowl.-Based Syst. 21(8), 911–919 (2008)
Y.Y. Yao: Generalized rough set models. In: Rough Sets in Knowledge Discovery, ed. by L. Polkowski, A. Skowron (Physica, Heidelberg 1998) pp. 286–318
W. Zhu: Relationship between generalized rough sets based on binary relation and covering, Inf. Sci. 179(3), 210–225 (2009)
Y.Y. Yao, S.K.M. Wang, T.Y. Lin: A review of rough set models. In: Rough Sets and Data Mining: Analysis for Imprecise Data, ed. by L. Polkowski, A. Skowron (Kluwer, Boston 1997) pp. 47–75
Y.Y. Yao: Constructive and algebraic methods of the theory of rough sets, J. Inf. Sci. 109(1), 21–47 (1998)
J.T. Yao, Y.Y. Yao: Induction of classification rules by granular computing, Proc. Int. Conf. Rough Sets Curr. Trends Comput. (Springer, Berlin Heidelberg 2002) pp. 331–338
J.T. Yao, A.V. Vasilakos, W. Pedrycz: Granular computing: Perspectives and challenges, IEEE Trans. Cybern. 43(6), 1977–1989 (2013)
W. Zakowski: Approximations in the space (u, Π), Demonstr. Math. 16(40), 761–769 (1983)
J.A. Pomykala: Approximation operations in approximation space, Bull. Pol. Acad. Sci. Math. 35, 653–662 (1987)
J.A. Pomykała: On definability in the nondeterministic information system, Bull. Pol. Acad. Sci.: Math. 36(3/4), 193–210 (1988)
I. Couso, D. Dubois: Rough sets, coverings and incomplete information, Fundam. Inf. 108(3), 223–247 (2011)
M. Restrepo, C. Cornelis, J. Gómez: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets, Int. J. Approx. Reason. 55(1), 469–485 (2014)
J. Wang, D. Dai, Z. Zhou: Fuzzy covering generalized rough sets, J. Zhoukou Teach. Coll. 21(2), 20–22 (2004), in Chinese
Z. Xu, Q. Wang: On the properties of covering rough sets model, J. Henan Norm. Univ. 33(1), 130–132 (2005), in Chinese
W.H. Xu, W.X. Zhang: Measuring roughness of generalized rough sets induced by a covering, Fuzzy Sets Syst. 158(22), 2443–2455 (2007)
W. Zhu, F.Y. Wang: Some results on covering generalized rough sets, Pattern Recogn. Artif. Intell. 15(1), 6–13 (2002)
W. Zhu, F.Y. Wang: Reduction and axiomization of covering generalized rough sets, Inf. Sci. 152, 217–230 (2003)
W. Zhu: Properties of the second type of covering-based rough sets, Proc. Int. Web Intell. Intell. Agent Technol. (IEEE, Piscataway 2006) pp. 494–497
W. Zhu, F.Y. Wang: A new type of covering rough set, Proc. Int. Conf. Intell. Syst. (IEEE, Piscataway 2006) pp. 444–449
W. Zhu, F.Y. Wang: On three types of covering-based rough sets, IEEE Trans. Knowl. Data Eng. 19(8), 1131–1144 (2007)
G.L. Liu: The relationship among different covering approximations, Inf. Sci. 250, 178–183 (2013)
Y.-L. Zhang, M.-K. Luo: Relationships between covering-based rough sets and relation-based rough sets, Inf. Sci. 225, 55–72 (2012)
P. Samanta, M.K. Chakraborty: Generalized rough sets and implication lattices, Trans. Rough Sets 14, 183–201 (2011)
J.A. Pomykala: Approximation, Similarity and Rough Construction, ILLC Prepublication Series for Computation and Complexity Theory, Vol. 93 (Univ. Amsterdam, Amsterdam 1993)
T.-J. Li: Rough approximation operators in covering approximation spaces, RSCTC2006 Proc. (Springer, Berlin Heidelberg 2006) pp. 174–182
D. Slezak, P. Wasilewski: Granular sets – Foundations and case study of tolerance spaces, RSFDGrC2007 Proc. (Springer, Berlin Heidelberg 2007) pp. 435–442
G. Cattaneo, D. Ciucci: Lattices with interior and closure operators and abstract approximation spaces, Trans. Rough Sets 10, 67–116 (2009)
Z. Bonikowski: A certain conception of the calculus of rough sets, Notre Dame J. Formal Log. 33(3), 412–421 (1992)
K.Y. Qin, Y. Gao, Z. Pei: On covering rough sets, RSKT2007 Proc. (Springer, Berlin Heidelberg 2007) pp. 34–41
W. Zhu: Topological approaches to covering rough sets, Inf. Sci. 177(6), 1499–1508 (2007)
Y.Y. Yao, Y.H. Chen: Subsystem based generalizations of rough set approximations, Proc. Int. Conf. Found. Intell. Syst. (Springer, Berlin Heidelberg 2005) pp. 210–218
A. Wiweger: On topological rough sets, Bull. Pol. Acad. Sci. Math. 37, 89–93 (1989)
J. Járvinen: On the structure of rough approximations, Fundam. Inf. 53(2), 135–153 (2002)
G. Cattaneo: Abstract approximation spaces for rough theories, Rough Sets Knowl. Discov. 1, 59–98 (1998)
M. Gehrke, E. Walker: On the structure of rough sets, Bull. Pol. Acad. Sci. Math. 40, 235–245 (1992)
B.F. Chellas: Modal Logic: An Introduction (Cambridge Univ. Press, Cambridge 1988)
E. Orlowska, Z. Pawlak: Representation of nondeterministic information, Theor. Comput. Sci. 29, 27–39 (1984)
D. Vakarelov: A model logic for similarity relations in Pawlak knowledge representation systems, Fundam. Inf. 15(1), 61–79 (1991)
D. Vakarelov: Modal logics for knowledge representation systems, Theor. Comput. Sci. 90(2), 433–456 (1991)
P. Balbiani, D. Vakarelov: A modal logic for indiscernibility and complementarity in information systems, Fundam. Inf. 50(3/4), 243–263 (2002)
F. del Cerro, L.E. Orlowska: DAL – A logic for data analysis, Theor. Comput. Sci. 36, 251–264 (1985)
M. Banerjee, K. Chakraborty: Algebras from rough sets. In: Rough-Neural Computing: Techniques for Computing with Words, ed. by S.K. Pal, A. Skowron, L. Polkowski (Springer, Berlin Heidelberg 2004) pp. 157–188
M. Banerjee, M.A. Khan: Propositional logics from rough set theory, Trans. Rough Sets 6, 1–25 (2007)
D. Ciucci, D. Dubois: Truth-functionality, rough sets and three-valued logics, Proc. ISMVL (IEEE, Piscataway 2010) pp. 98–103
Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska: Extensions and intentions in the rough set theory, Inf. Sci. 107(1–4), 149–167 (1998)
G. Cattaneo, D. Ciucci: On the lattice structure of preclusive rough sets, IEEE Int. Conf. Fuzzy Syst., Piscataway (2004)
B. Konikowska: Three-valued logic for reasoning about covering-based rough sets. In: Rough Sets and Intelligent Systems – Professor Z. Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, ed. by A. Skowron, Z. Suraj (Springer, Berlin Heidelberg 2013) pp. 439–461
S. Greco, B. Matarazzo, R. Słowiński: Algebra and topology for dominance-based rough set approach. In: Advances in Intelligent Information Systems, Studies in Computational Intelligence, Vol. 265, ed. by Z.W. Ras, L.-S. Tsay (Springer, Berlin Heidelberg 2010) pp. 43–78
B.A. Davey, H.A. Priestley: Introduction to Lattices and Order (Cambridge Univ. Press, Cambridge 1990)
N. Caspard, B. Monjardet: The lattices of closure systems, closure operators, and implicational systems on a finite set: A survey, Discret. Appl. Math. 127(2), 241–269 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Yao, J., Ciucci, D., Zhang, Y. (2015). Generalized Rough Sets. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-662-43505-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43504-5
Online ISBN: 978-3-662-43505-2
eBook Packages: EngineeringEngineering (R0)