Skip to main content

Application of Fuzzy Techniques to Autonomous Robots

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

The application of fuzzy techniques in robotics has become widespread in the last years and in different fields of robotics, such as behavior design, coordination of behavior, perception, localization, etc. The significance of the contributions was high until the end of the 1990s, where the main aim in robotics was the implementation of basic behaviors. In the last years, the focus in robotics moved to building robots that operate autonomously in real environments; the actual impact of fuzzy techniques in the robotics community is not as deep as it was in the early stages of robotics or as it is in other application areas (e. g., medicine, processes industry …). In spite of this, new emerging areas in robotics such as human–robot interaction, or well-established ones, such as perception, are good examples of new potential realms of applications where (hybridized) fuzzy approaches will surely be capable of exhibiting their capacity to deal with such complex and dynamic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CORE:

Computing Research and Education

DOF:

degree of freedom

DSP:

digital signal processor

ERA:

Excellence in Research for Australia

FLC:

fuzzy logic controller

FLS:

fuzzy logic system

GFS:

genetic fuzzy system

LQR:

linear-quadratic regulator

PID:

proportional-integral-derivative

RFID:

radio frequency identification

SLAM:

simultaneous localization and mapping

TSK:

Takagi–Sugeno–Kang

UAV:

unmanned aerial vehicle

References

  1. A. Saffiotti: The uses of fuzzy logic in autonomous robot navigation, Soft Comput. 1(4), 180–197 (1997)

    Article  Google Scholar 

  2. E.H. Ruspini: Fuzzy logic in the flakey robot, Proc. Int. Conf. Fuzzy Log. Neural Netw., Iizuka (1990) pp. 767–770

    Google Scholar 

  3. A. Saffiotti, E.H. Ruspini, K. Konolige: Blending reactivity and goal-directedness in a fuzzy controller, IEEE Int. Conf. Fuzzy Syst., San Francisco (1993) pp. 134–139

    Google Scholar 

  4. A. Saffiotti, K. Konolige, E.H. Ruspini: A multivalued-logic approach to integrating planning and control, Artif. Intell. 76(1), 481–526 (1995)

    Article  Google Scholar 

  5. Microsoft, Inc: http://academic.research.microsoft.com/

  6. Thomson Reuters: http://thomsonreuters.com/thomson-reuters-web-of-science/

  7. T.S. Li, S.-J. Chang, Y.-X. Chen: Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot, IEEE Trans. Ind. Electron. 50(5), 867–880 (2003)

    Article  Google Scholar 

  8. M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarin, S. Barro: A fuzzy temporal rule-based velocity controller for mobile robotics, Fuzzy Sets Syst. 134(1), 83–99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. V.M. Peri, D. Simon: Fuzzy logic control for an autonomous robot, Proc. Annu. Meet. N. Am. Fuzzy Inf. Process. Soc. (2005) pp. 337–342

    Google Scholar 

  10. M. Mucientes, D.L. Moreno, A. Bugarín, S. Barro: Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics, Soft Comput. 10(10), 881–889 (2006)

    Article  Google Scholar 

  11. M. Mucientes, D.L. Moreno, A. Bugarn, S. Barro: Design of a fuzzy controller in mobile robotics using genetic algorithms, Appl. Soft Comput. 7(2), 540–546 (2007)

    Article  Google Scholar 

  12. M. Mucientes, R. Alcalá, J. Alcalá-Fdez, J. Casillas: Learning weighted linguistic rules to control an autonomous robot, Int. J. Intell. Syst. 24, 226–251 (2009)

    Article  MATH  Google Scholar 

  13. C. Wagner, H. Hagras: A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots, Proc. IEEE Int. Conf. Fuzzy Syst. (2007) pp. 1–6

    Google Scholar 

  14. C.-F. Juang, C.-H. Hsu: Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control, IEEE Trans. Ind. Electron. 56(10), 3931–3940 (2009)

    Article  Google Scholar 

  15. O. Linda, M. Manic: Comparative analysis of type-1 and type-2 fuzzy control in context of learning behaviors for mobile robotics, Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc. (2010) pp. 1092–1098

    Google Scholar 

  16. C. Wagner, H. Hagras: Toward general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)

    Article  Google Scholar 

  17. A. Zhu, S.X. Yang: A fuzzy logic approach to reactive navigation of behavior-based mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '04, Vol. 5 (2004) pp. 5045–5050

    Google Scholar 

  18. D.R. Parhi: Navigation of mobile robots using a fuzzy logic controller, J. Int. Robot. Syst. 42(3), 253–273 (2005)

    Article  MathSciNet  Google Scholar 

  19. S.K. Pradhan, D.R. Parhi, A.K. Panda: Fuzzy logic techniques for navigation of several mobile robots, Appl. Soft Comput. 9(1), 290–304 (2009)

    Article  Google Scholar 

  20. I. Baturone, F.J. Moreno-Velo, V. Blanco, J. Ferruz: Design of embedded DSP-based fuzzy controllers for autonomous mobile robots, IEEE Trans. Ind. Electron. 55(2), 928–936 (2008)

    Article  Google Scholar 

  21. F. Cupertino, V. Giordano, D. Naso, L. Delfine: Fuzzy control of a mobile robot, Robot. Autom. Mag. IEEE 13(4), 74–81 (2006)

    Article  Google Scholar 

  22. M. Wang, J.N.-K. Liu: Fuzzy logic based robot path planning in unknown environment, Proc. Int. Conf. Mach. Learn. Cybern., Vol. 2 (2005) pp. 813–818

    Google Scholar 

  23. M. Wang, J.N.K. Liu: Fuzzy logic-based real-time robot navigation in unknown environment with dead ends, Robot. Auton. Syst. 56(7), 625–643 (2008)

    Article  Google Scholar 

  24. O.R.E. Motlagh, T.S. Hong, N. Ismail: Development of a new minimum avoidance system for a behavior-based mobile robot, Fuzzy Sets Syst. 160(13), 1929–1946 (2009)

    Article  MathSciNet  Google Scholar 

  25. R. Huq, G.K.I. Mann, R.G. Gosine: Behavior-modulation technique in mobile robotics using fuzzy discrete event system, IEEE Trans. Robotics 22(5), 903–916 (2006)

    Article  Google Scholar 

  26. H.A. Hagras: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Article  Google Scholar 

  27. P. Ritthipravat, T. Maneewarn, D. Laowattana, J. Wyatt: A modified approach to fuzzy Q learning for mobile robots, Proc. IEEE Int. Conf. Syst., Man Cybern., Vol. 3 (2004) pp. 2350–2356

    Google Scholar 

  28. L.-H. Chen, C.-H. Chiang: New approach to intelligent control systems with self-exploring process, IEEE Trans. Syst. Man Cybern. B 33(1), 56–66 (2003)

    Article  Google Scholar 

  29. N.B. Hui, V. Mahendar, D.K. Pratihar: Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches, Fuzzy Sets Syst. 157(16), 2171–2204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Doitsidis, K.P. Valavanis, N.C. Tsourveloudis, M. Kontitsis: A framework for fuzzy logic based UAV navigation and control, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '04, Vol. 4 (2004) pp. 4041–4046

    Google Scholar 

  31. B. Kadmiry, D. Driankov: A fuzzy gain-scheduler for the attitude control of an unmanned helicopter, IEEE Trans. Fuzzy Syst. 12(4), 502–515 (2004)

    Article  MATH  Google Scholar 

  32. H. Hu, P.-Y. Woo: Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators, IEEE Trans. Ind. Electron. 53(3), 929–940 (2006)

    Article  Google Scholar 

  33. E.A. Merchan-Cruz, A.S. Morris: Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace, IEEE Trans. Robot. 22(4), 613–624 (2006)

    Article  Google Scholar 

  34. J. Yu, M. Tan, S. Wang, E. Chen: Development of a biomimetic robotic fish and its control algorithm, IEEE Trans. Syst. Man Cybern. B 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  35. K.-B. Sim, K.-S. Byun, F. Harashima: Internet-based teleoperation of an intelligent robot with optimal two-layer fuzzy controller, IEEE Trans. Ind. Electron. 53(4), 1362–1372 (2006)

    Article  Google Scholar 

  36. R. Martínez, O. Castillo, L.T. Aguilar: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms, Inf. Sci. 179(13), 2158–2174 (2009)

    Article  MATH  Google Scholar 

  37. T. Das, I.N. Kar: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots, IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Article  Google Scholar 

  38. E. Maalouf, M. Saad, H. Saliah: A higher level path tracking controller for a four-wheel differentially steered mobile robot, Robot. Auton. Syst. 54(1), 23–33 (2006)

    Article  Google Scholar 

  39. G. Antonelli, S. Chiaverini, G. Fusco: A fuzzy-logic-based approach for mobile robot path tracking, IEEE Trans. Fuzzy Syst. 15(2), 211–221 (2007)

    Article  Google Scholar 

  40. R.-J. Wai, C.-M. Liu: Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot, IEEE Trans. Ind. Electron. 56(7), 2667–2683 (2009)

    Article  Google Scholar 

  41. Z.-G. Hou, A.-M. Zou, L. Cheng, M. Tan: Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach, IEEE Trans. Control Syst. Technol. 17(4), 803–815 (2009)

    Article  Google Scholar 

  42. C.-Y. Chen, T.-H.S. Li, Y.-C. Yeh: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Inf. Sci. 179(1), 180–195 (2009)

    Article  MATH  Google Scholar 

  43. Z. Song, J. Yi, D. Zhao, X. Li: A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach, Fuzzy Sets Syst. 154(2), 208–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.P. Hwang, E. Kim: Robust tracking control of an electrically driven robot: Adaptive fuzzy logic approach, IEEE Trans. Fuzzy Syst. 14(2), 232–247 (2006)

    Article  Google Scholar 

  45. S. Purwar, I.N. Kar, A.N. Jha: Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints, Fuzzy Sets Syst. 152(3), 651–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. C.-S. Chiu: Mixed feedforward/feedback based adaptive fuzzy control for a class of mimo nonlinear systems, IEEE Trans. Fuzzy Syst. 14(6), 716–727 (2006)

    Article  Google Scholar 

  47. N. Goléa, A. Goléa, K. Barra, T. Bouktir: Observer-based adaptive control of robot manipulators: Fuzzy systems approach, Appl. Soft Comput. 8(1), 778–787 (2008)

    Article  Google Scholar 

  48. Y. Guo, P.-Y. Woo: An adaptive fuzzy sliding mode controller for robotic manipulators, IEEE Trans. Syst. Man Cybern. A 33(2), 149–159 (2003)

    Article  Google Scholar 

  49. Y.L. Sun, M.J. Er: Hybrid fuzzy control of robotics systems, IEEE Trans. Fuzzy Syst. 12(6), 755–765 (2004)

    Article  Google Scholar 

  50. V. Santibañez, R. Kelly, M.A. Llama: A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators, IEEE Trans. Fuzzy Syst. 13(3), 362–372 (2005)

    Article  Google Scholar 

  51. E. Kim: Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic, IEEE Trans. Fuzzy Syst. 12(3), 368–378 (2004)

    Article  Google Scholar 

  52. X. Jiang, Q.-L. Han: On designing fuzzy controllers for a class of nonlinear networked control systems, IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008)

    Article  Google Scholar 

  53. C.-L. Hwang, L.-J. Chang, Y.-S. Yu: Network-based fuzzy decentralized sliding-mode control for car-like mobile robots, IEEE Trans. Ind. Electron. 54(1), 574–585 (2007)

    Article  Google Scholar 

  54. C.-K. Lin: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks, IEEE Trans. Fuzzy Syst. 14(6), 849–859 (2006)

    Article  Google Scholar 

  55. W.W. Melek, A.A. Goldenberg: Neurofuzzy control of modular and reconfigurable robots, IEEE/ASME Trans. Mechatron. 8(3), 381–389 (2003)

    Article  Google Scholar 

  56. Y.-C. Chang: Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems, IEEE Trans. Syst. Man Cybern. B 35(6), 1108–1119 (2005)

    Article  Google Scholar 

  57. F. Sun, L. Li, H.-X. Li, H. Liu: Neuro-fuzzy dynamic-inversion-based adaptive control for robotic manipulators—discrete time case, IEEE Trans. Ind. Electron. 54(3), 1342–1351 (2007)

    Article  MathSciNet  Google Scholar 

  58. M.O. Efe: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm, IEEE Trans. Syst. Man Cybern. B 38(6), 1561–1570 (2008)

    Article  Google Scholar 

  59. C.-S. Chen: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators, IEEE Trans. Ind. Electron. 55(9), 3402–3414 (2008)

    Article  Google Scholar 

  60. R.-J. Wai, P.-C. Chen: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics, IEEE Trans. Ind. Electron. 53(4), 1328–1349 (2006)

    Article  Google Scholar 

  61. R.-J. Wai, Z.-W. Yang: Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics, IEEE Trans. Syst. Man Cybern. B 38(5), 1326–1346 (2008)

    Article  Google Scholar 

  62. A. Chatterjee, R. Chatterjee, F. Matsuno, T. Endo: Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling, IEEE Trans. Ind. Electron. 55(3), 1256–1270 (2008)

    Article  Google Scholar 

  63. F.J. Marín, J. Casillas, M. Mucientes, A.A. Transeth, S.A. Fjerdingen, I. Schjølberg: Learning intelligent controllers for path-following skills on snake-like robots, LNAI. Intell. Robot. Appl. Proc. 4th Int. Conf., II ICIRA (2011), 525–535 (2011)

    Google Scholar 

  64. Z. Bingül, O. Karahan: A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control, Expert Syst. Appl. 38(1), 1017–1031 (2011)

    Article  Google Scholar 

  65. O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, J. Soria: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Inf. Sci. 192, 19–38 (2012)

    Article  Google Scholar 

  66. M. Biglarbegian, W.W. Melek, J.M. Mendel: Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: Theory and experiments, IEEE Trans. Ind. Electron. 58(4), 1371–1384 (2011)

    Article  Google Scholar 

  67. O. Linda, M. Manic: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot, IEEE Trans. Ind. Inf. 7(4), 661–670 (2011)

    Article  Google Scholar 

  68. T.S. Li, S.-J. Chang, W. Tong: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors, IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  69. M. Mucientes, A. Bugarín: People detection with quantified fuzzy temporal rules, Proc. IEEE Int. Conf. Fuzzy Syst. (2007) pp. 1149–1154

    Google Scholar 

  70. M. Mucientes, A. Bugarín: People detection through quantified fuzzy temporal rules, Pattern Recognit. 43(4), 1441–1453 (2010)

    Article  MATH  Google Scholar 

  71. M. Mucientes, J. Alcalá-Fdez, R. Alcalá, J. Casillas: A case study for learning behaviors in mobile robotics by evolutionary fuzzy systems, Expert Syst. Appl. 37, 1471–1493 (2010)

    Article  MATH  Google Scholar 

  72. P. Carinena, C.V. Regueiro, A. Otero, A.J. Bugarin, S. Barro: Landmark detection in mobile robotics using fuzzy temporal rules, IEEE Trans. Fuzzy Syst. 12(4), 423–435 (2004)

    Article  Google Scholar 

  73. R.M. Muñoz-Salinas, E. Aguirre, M. García-Silvente, A. González: A fuzzy system for visual detection of interest in human-robot interaction, Proc. 2nd Int. Conf. Mach. Intell. (ACIDCA-ICMI2005) (2005) pp. 574–581

    Google Scholar 

  74. J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas: A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games, Proc. 14th IEEE Int. Conf. Fuzzy Syst. FUZZ '05 (2005) pp. 359–364

    Google Scholar 

  75. X. Yang, M. Moallem, R.V. Patel: A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation, IEEE Trans. Syst. Man Cybern. B 35(6), 1214–1224 (2005)

    Article  Google Scholar 

  76. B. Innocenti, B. López, J. Salvi: A multi-agent architecture with cooperative fuzzy control for a mobile robot, Robot. Auton. Syst. 55(12), 881–891 (2007)

    Article  Google Scholar 

  77. M.A. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation, Appl. Soft Comput. 9(3), 1102–1110 (2009)

    Article  Google Scholar 

  78. J.-H. Kim, Y.-H. Kim, S.-H. Choi, I.-W. Park: Evolutionary multi-objective optimization in robot soccer system for education, IEEE Comput. Intell. Mag. 4(1), 31–41 (2009)

    Article  MathSciNet  Google Scholar 

  79. P. Vadakkepat, O.C. Miin, X. Peng, T.-H. Lee: Fuzzy behavior-based control of mobile robots, IEEE Trans. Fuzzy Syst. 12(4), 559–565 (2004)

    Article  MATH  Google Scholar 

  80. P. Vadakkepat, X. Peng, B.K. Quek, T.H. Lee: Evolution of fuzzy behaviors for multi-robotic system, Robot. Auton. Syst. 55(2), 146–161 (2007)

    Article  Google Scholar 

  81. A. Chatterjee, F. Matsuno: A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems, IEEE Trans. Fuzzy Syst. 15(5), 984–997 (2007)

    Article  Google Scholar 

  82. H.-H. Lin, C.-C. Tsai, J.-C. Hsu: Ultrasonic localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering, IEEE Trans. Instrum. Meas. 57(9), 2024–2034 (2008)

    Article  Google Scholar 

  83. M. Begum, G.K.I. Mann, R.G. Gosine: Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots, Appl. Soft Comput. 8(1), 150–165 (2008)

    Article  Google Scholar 

  84. X. Cui, T. Hardin, R.K. Ragade, A.S. Elmaghraby: A swarm-based fuzzy logic control mobile sensor network for hazardous contaminants localization, Proc. IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. (2004) pp. 194–203

    Google Scholar 

  85. D.H.V. Sincák: Multi–robot control system for pursuit–evasion problem, J. Electr. Eng. 60(3), 143–148 (2009)

    Google Scholar 

  86. I. Harmati, K. Skrzypczyk: Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework, Robot. Auton. Syst. 57(1), 75–86 (2009)

    Article  Google Scholar 

  87. C. Zhou, Q. Meng: Dynamic balance of a biped robot using fuzzy reinforcement learning agents, Fuzzy Sets Syst. 134(1), 169–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  88. R.K. Jha, B. Singh, D.K. Pratihar: On-line stable gait generation of a two-legged robot using a genetic–fuzzy system, Robot. Auton. Syst. 53(1), 15–35 (2005)

    Article  Google Scholar 

  89. J.G. Nichol, S.P.N. Singh, K.J. Waldron, L.R. Palmer, D.E. Orin: System design of a quadrupedal galloping machine, Int. J. Robot. Res. 23(10/11), 1013–1027 (2004)

    Article  Google Scholar 

  90. P.M. Aubin, E. Whittaker, W.R. Ledoux: A robotic cadaveric gait simulator with fuzzy logic vertical ground reaction force control, IEEE Trans. Robot. 28(1), 246–255 (2012)

    Article  Google Scholar 

  91. Z. Liu, Y. Zhang, Y. Wang: A type-2 fuzzy switching control system for biped robots, IEEE Trans. Syst. Man Cybern. C 37(6), 1202–1213 (2007)

    Article  Google Scholar 

  92. R.K. Barai, K. Nonami: Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot, Inf. Sci. 177(8), 1892–1915 (2007)

    Article  Google Scholar 

  93. K. Kiguchi, T. Tanaka, K. Watanabe, T. Fukuda: Exoskeleton for human upper-limb motion support, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '03, Vol. 2 (2003) pp. 2206–2211

    Google Scholar 

  94. K. Kiguchi, T. Tanaka, T. Fukuda: Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004)

    Article  Google Scholar 

  95. M.-S. Ju, C.-C.K. Lin, D.-H. Lin, I.-S. Hwang, S.-M. Chen: A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 349–358 (2005)

    Article  Google Scholar 

  96. M.-K. Chang, T.-H. Yuan: Experimental implementations of adaptive self-organizing fuzzy sliding mode control to a 3-DOF rehabilitation robot, Int. J. Innov. Comput. Inf. Control 5(10), 3391–3404 (2009)

    Google Scholar 

  97. M.-K. Chang: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators, Control Eng. Pract. 18(1), 13–22 (2010)

    Article  Google Scholar 

  98. H. Mobahi, S. Ansari: Fuzzy perception, emotion and expression for interactive robots, Proc. IEEE Int. Conf. Syst., Man Cybern., Vol. 4 (2003) pp. 3918–3923

    Google Scholar 

  99. N. Esau, E. Wetzel, L. Kleinjohann, B. Kleinjohann: Real-time facial expression recognition using a fuzzy emotion model, Proc. IEEE Int. Conf. Fuzzy Syst., FUZZ-IEEE (2007) pp. 1–6

    Google Scholar 

  100. D. Kulic, E. Croft: Anxiety detection during human-robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2005) pp. 616–621

    Google Scholar 

  101. D. Kulic, E.A. Croft: Affective state estimation for human–robot interaction, IEEE Trans. Robot. 23(5), 991–1000 (2007)

    Article  Google Scholar 

  102. Z. Liu, H.-X. Li: A probabilistic fuzzy logic system for modeling and control, IEEE Trans. Fuzzy Syst. 13(6), 848–859 (2005)

    Article  Google Scholar 

  103. H. Liu: A fuzzy qualitative framework for connecting robot qualitative and quantitative representations, IEEE Trans. Fuzzy Syst. 16(6), 1522–1530 (2008)

    Article  Google Scholar 

  104. H. Liu, D.J. Brown, G.M. Coghill: Fuzzy qualitative robot kinematics, IEEE Trans. Fuzzy Syst. 16(3), 808–822 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Rodríguez Fdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez Fdez, I., Mucientes, M., Bugarín Diz, A. (2015). Application of Fuzzy Techniques to Autonomous Robots. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics