Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we summarize basic knowledge on fuzzy logics and fuzzy sets. After a short historical overview of ideas strongly connected to and preceding the notion of fuzzy logics and fuzzy sets, we outline links between many-valued and fuzzy logics. Then fuzzy subsets of a universe are introduced. Interpretations of unary and binary connectives in fuzzy logics as appropriate functions (operations) on the unit interval are central to the approach. Fundamental knowledge on these function classes is presented then, including results on triangular norms and conorms, as well as on implications. Our concluding remarks suggest further reading, beyond the basics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Zadeh: Fuzzy sets, Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Hartshorne, P. Weiss (Eds.): Principles of Philosophy, Collected Papers of Charles Sanders Peirce (Harvard University Press, Cambridge 1931)

    Google Scholar 

  3. B. Russell: Vagueness, Austr. J. Philos. 1, 84–92 (1923)

    Google Scholar 

  4. J. Łukasiewicz: Philosophical remarks on many-valued systems of propositional logic. In: Selected Works, Studies in Logic and the Foundations of Mathematics, ed. by L. Borkowski (North-Holland, Amsterdam 1970) pp. 153–179

    Google Scholar 

  5. M. Black: Vagueness, Philos. Sci. 4, 427–455 (1937)

    Article  Google Scholar 

  6. H. Weyl: The ghost of modality. In: Philosophical Essays in Memory of Edmund Husserl, ed. by M. Farber (Cambridge, Cambridge 1940) pp. 278–303

    Google Scholar 

  7. A. Kaplan, H.F. Schott: A calculus for empirical classes, Methods III, 165–188 (1951)

    Google Scholar 

  8. K. Menger: Ensembles flous et fonctions aleatoires, C. R. Acad. Sci. Paris 232, 2001–2003 (1951)

    MathSciNet  MATH  Google Scholar 

  9. B. Schweizer, A. Sklar: Probabilistic Metric Spaces (North-Holland, Amsterdam 1983)

    MATH  Google Scholar 

  10. E.P. Klement, R. Mesiar, E. Pap: Triangular Norms (Kluwer, Dordrecht 2000)

    Book  MATH  Google Scholar 

  11. D. Dubois, W. Ostasiewicz, H. Prade: Fuzzy sets: History and basic notions. In: Fundamentals of Fuzzy Sets, (Kluwer, Dordrecht 2000), Chap. 1, p. 21–124

    Chapter  Google Scholar 

  12. M. Sugeno: Fuzzy measures and fuzzy initegrals: A survey. In: Fuzzy Automata and Decision Processes, ed. by G.N. Saridis, M.M. Gupta, B.R. Gaines (North-Holland, Amsterdam 1977) pp. 89–102

    Google Scholar 

  13. E. Trillas: Sobre funciones de negación en la teorí a de conjuntos difusos, Stochastica III, 47–60 (1979)

    MathSciNet  Google Scholar 

  14. K. Menger: Statistical metric spaces, Proc. Natl. Acad. Sci. USA 28, 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Alsina, M.J. Frank, B. Schweizer: Associative Functions: Triangular Norms and Copulas (Word Scientific, Hoboken 2006)

    Book  MATH  Google Scholar 

  16. E.P. Klement: Operations on fuzzy sets – An axiomatix approach, Inf. Sci. 27, 221–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.C. Fodor: Contrapositive symmetry of fuzzy implications, Fuzzy Sets Syst. 69, 141–156 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Sikorski: Boolean Algebras (Springer, Berlin 1964)

    MATH  Google Scholar 

  19. C.H. Ling: Representation of associative functions, Publ. Math. Debr. 12, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  20. N.H. Abel: Untersuchung der Fuctionen zweier unabhängig veränderlichen Grössen x und y wie $f(x,y)$, welche die Eigenschaft haben, dass $f(z,f(x,y))$ eine symmetrische Function von x, y und z ist, J. Reine Angew. Math. 1, 11–15 (1826)

    Article  MathSciNet  Google Scholar 

  21. W.M. Faucett: Compact semigroups irreducibly connected between two idempotents, Proc. Am. Math. Soc. 6, 741–747 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.S. Mostert, A.L. Shields: On the structure of semigroups on a compact manifold with boundary, Annu. Math. 65, 117–143 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.B. Paalman-de Mirinda: Topological Semigroups, Technical Report (Mathematisch Centrum, Amsterdam 1964)

    MATH  Google Scholar 

  24. J. Aczél: Über eine Klasse von Funktionalgleichungen, Comment. Math. Helv. 54, 247–256 (1948)

    Article  MATH  Google Scholar 

  25. J. Aczél: Sur les opérations définies pour des nombres réels, Bull. Soc. Math. Fr. 76, 59–64 (1949)

    MATH  Google Scholar 

  26. J. Aczél: Lectures on Functional Equations and their Applications (Academic, New York 1966)

    MATH  Google Scholar 

  27. S. Ovchinnikov, M. Roubens: On fuzzy strict preference, indifference and incomparability relations, Fuzzy Sets Syst. 47, 313–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Ovchinnikov, M. Roubens: On strict preference relations, Fuzzy Sets Syst. 43, 319–326 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support (Kluwer, Dordrecht 1994)

    Book  MATH  Google Scholar 

  30. M.J. Frank: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$, Aeq. Math. 19, 194–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. E.P. Klement, R. Mesiar, E. Pap: A characterization of the ordering of continuous t-norms, Fuzzy Sets Syst. 86, 189–195 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Hamacher: Über logische Aggrationen nichtbinär explizierter Entscheidungskriterien; Ein axiomatischer Beitrag zur normativen Entscheidungstheorie (Fischer, Frankfurt 1978)

    Google Scholar 

  33. J.C. Fodor, T. Keresztfalvi: Characterization of the Hamacher family of t-norms, Fuzzy Sets Syst. 65, 51–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Baczyński, B. Jayaram: Fuzzy Implications (Springer, Berlin 2008)

    MATH  Google Scholar 

  35. P. Smets, P. Magrez: Implication in fuzzy logic, Int. J. Approx. Reason. 1, 327–347 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Trillas, L. Valverde: On some functionally expressable implications for fuzzy set theory, Proc. 3rd Int. Seminar on Fuzzy Set Theory (Johannes Kepler Universität, Linz 1981) pp. 173–190

    Google Scholar 

  37. B.R. Gaines: Foundations of fuzzy reasoning, Int. J. Man-Mach. Stud. 8, 623–668 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.R. Yager: An approach to inference in approximate reasoning, Int. J. Man-Mach. Stud. 13, 323–338 (1980)

    Article  MathSciNet  Google Scholar 

  39. W. Bandler, L.J. Kohout: Fuzzy power sets and fuzzy implication operators, Fuzzy Sets Syst. 4, 13–30 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Trillas, L. Valverde: On implication and indistinguishability in the setting of fuzzy logic. In: Management Decision Support Systems using Fuzzy Sets and Possibility Theory, ed. by J. Kacprzyk, R.R. Yager (Verlag TÜV Rheinland, Köln 1985) pp. 198–212

    Google Scholar 

  41. H. Prade: Modèles mathématiques de l'imprécis et de l'incertain en vue d'applications au raisonnement naturel, Ph.D. Thesis (Université P. Sabatier, Toulouse 1982)

    MATH  Google Scholar 

  42. S. Weber: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy Sets Syst. 11, 115–134 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Dubois, H. Prade: Fuzzy logics and the generalized modus ponens revisited, Int. J. Cybern. Syst. 15, 293–331 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Dubois, H. Prade: Fuzzy set-theoretic differences and inclusions and their use in the analysis of fuzzy equations, Control Cybern. 13, 129–145 (1984)

    MathSciNet  MATH  Google Scholar 

  45. G. Birkhoff: Lattice Theory, Collected Publications, Vol. 25 (Am. Math. Soc., Providence 1967)

    MATH  Google Scholar 

  46. U. Bodenhofer: A Similarity-Based Generalization of Fuzzy Orderings, Schriften der Johannes-Kepler-Universität Linz, Vol. 26 (Universitätsverlag Rudolf Trauner, Linz 1999)

    MATH  Google Scholar 

  47. D. Dubois, H. Prade: Fuzzy sets in approximate reasoning, part 1: Inference with possibility distributions, Fuzzy Sets Syst. 40, 143–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. R.R. Yager, A. Rybalov: Uninorm aggregation operators, Fuzzy Sets Sys. 80, 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.C. Fodor, R.R. Yager, A. Rybalov: Structure of uninorms, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5(4), 411–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Calvo, B. De Baets, J. Fodor: The functional equations of frank and alsina for uninorms and nullnorms, Fuzzy Sets Syst. 120, 385–394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. B. De Baets, J. Fodor: Residual operators of uninorms, Soft Comput. 3, 89–100 (1999)

    Article  MATH  Google Scholar 

  52. M. Mas, G. Mayor, J. Torrens: T-operators and uninorms on a finite totally ordered set, Int. J. Intell. Syst. 14, 909–922 (1999)

    Article  MATH  Google Scholar 

  53. M. Mas, M. Monserrat, J. Torrens: On left and right uninorms, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, 491–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Mas, G. Mayor, J. Torrens: The modularity condition for uninorms and t-operators, Fuzzy Sets Syst. 126, 207–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. De Baets: Idempotent uninorms, Eur. J. Oper. Res. 118, 631–642 (1999)

    Article  MATH  Google Scholar 

  56. J. Fodor, B. De Baets: A single-point characterization of representable uninorms, Fuzzy Sets Syst. 202, 89–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. B. De Baets, J.C. Fodor: Van melle?s combining function in mycin is a representable uninorm: An alternative proof, Fuzzy Sets Syst. 104, 133–136 (1999)

    Article  MATH  Google Scholar 

  58. B. Jayaram, M. Baczyński, R. Mesiar: R-implications and the exchange principle: The case of border continuous t-norms, Fuzzy Sets Syst. 224, 93–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Baczyński: On two distributivity equations for fuzzy implications and continuous, archimedean t-norms and t-conorms, Fuzzy Sets Syst. 211, 34–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Baczyński, F. Qin: Some remarks on the distributive equation of fuzzy implication and the contrapositive symmetry for continuous, archimedean t-norms, Int. J. Approx. Reason. 54, 290–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Massanet, J. Torrens: The law of importation versus the exchange principle on fuzzy implications, Fuzzy Sets Syst. 168, 47–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Massanet, J. Torrens: On a new class of fuzzy implications: h-implications and generalizations, Inf. Sci. 181, 2111–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Massanet, J. Torrens: On some properties of threshold generated implications, Fuzzy Sets Syst. 205, 30–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. S. Massanet, J. Torrens: Threshold generation method of construction of a new implication from two given ones, Fuzzy Sets Syst. 205, 50–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Massanet, J. Torrens: On the vertical threshold generation method of fuzzy implication and its properties, Fuzzy Sets Syst. 206, 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János C. Fodor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fodor, J.C., Rudas, I.J. (2015). Basics of Fuzzy Sets. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics