Application of Enzyme Bioluminescence for Medical Diagnostics

  • Ludmila A. Frank
  • Vasilisa V. Krasitskaya
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 144)


Nowadays luciferases are effectively used as analytical instruments in a great variety of research fields. Of special interest are the studies dealing with elaboration of novel analytical systems for the purposes of medical diagnostics. The ever-expanding spectrum of clinically important analytes accounts for the increasing demand for new techniques for their detection. In this chapter we have made an attempt to summarize the results on applications of luciferases as reporters in binding assays including immunoassay, nucleic acid hybridization assay, and so on. The data over the last 15 years have been analyzed and clearly show that luciferase-based assays, due to extremely high sensitivity, low cost, and the lack of need for skilled personnel, hold much promise for clinical diagnostics.

Graphical Abstract


Bioluminescence Ca2+-regulated photoprotein Diagnostics Immunoassay Luciferase Nucleic acid hybridization assay 









Bioluminescence resonance energy transfer




Enzyme-linked immunosorbent assay


Yellow fluorescent protein


Green fluorescent protein


Human chorionic gonadotropin


Follicle stimulating gonadotropic hormone


Human growth hormone


Highly bright Gaussia luciferase


Luteinizing gonadotropic hormone (lutropin)


Janus kinase 2


Luciferase immunoprecipitation system


Locked nucleic acid


Mannose-binding lectin


Micro RNA


Messenger RNA


Mycobacterium tuberculosis


Nucleic acid sequence-based amplification


Prostatic acid phosphatase


Polymerase chain reaction


Primer extension


Prostate specific antigen


Renilla luciferase


Reverse transcription polymerase chain reaction


Single nucleotide polymorphism


Toll-like receptor 4


Thyroid stimulation hormone (thyrotropin)


  1. 1.
    Wild D (2005) The immunoassay handbook, 3rd edn. Elsevier, OxfordGoogle Scholar
  2. 2.
    Ando Y, Niwa K, Yamada N, Enomoto T, Irie T, Kubota H, Ohmiya Y, Akiyama H (2008) Firefly bioluminescence quantum yield and color change by pH-sensitive green emission. Nat Photonics 2:44–47CrossRefGoogle Scholar
  3. 3.
    Tatsumi H, Fukuda S, Kikuchi M, Koyama Y (1996) Construction of biotinylated firefly luciferases using biotin acceptor peptides. Anal Biochem 243:176–180CrossRefGoogle Scholar
  4. 4.
    Seto Y, Iba T, Abe K (2001) Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferase. Luminescence 16:285–290CrossRefGoogle Scholar
  5. 5.
    Minekawa T, Ohkuma H, Abe K, Maekawa H, Arakawa H (2009) Development of ultra-high sensitivity bioluminescent enzyme immunoassay for hepatitis B virus surface antigen using firefly luciferase. Luminescence 24:394–399Google Scholar
  6. 6.
    Maeda M (2003) New label enzymes for bioluminescent enzyme immunoassay. J Pharm Biomed Anal 30:1725–1734CrossRefGoogle Scholar
  7. 7.
    Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Prot Eng Des Sel 19(9):391–400CrossRefGoogle Scholar
  8. 8.
    Stepanyuk GA, Unch J, Malikova NP, Markova SV, John Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398:1809–1817CrossRefGoogle Scholar
  9. 9.
    Krasitskaya VV, Burakova LP, Pyshnaya IA, Frank LA (2012) Bioluminescent reporters for identification of gene allelic variants. Rus J Bioorg Chem 38(3):298–305CrossRefGoogle Scholar
  10. 10.
    Burbelo PD, Goldman R, Mattson TL (2005) A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC Biotechnol 5(22):692–699Google Scholar
  11. 11.
    Burbelo PD, Ching KH, Mattson TL et al (2007) Rapid antibody quantification and generation of whole proteome antibody response profiles using LIPS (luciferase immunoprecipitation systems). Biochem Biophys Res Commun 352:889–895CrossRefGoogle Scholar
  12. 12.
    Ramanathan R, Burbelo P, Groot S et al (2008) A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198:444–451CrossRefGoogle Scholar
  13. 13.
    Burbelo PD, Issa AT, Ching KH, Cohen JI, Iadarola MJ, Marques A (2010) Rapid, simple, quantitative and highly sensitive antibody detection for lyme disease. Clin Vaccine Immunol 17(6):904–909CrossRefGoogle Scholar
  14. 14.
    Venisnik KM, Olafsen T, Loening AM, Iyer M, Gambhir SS, Wu AM (2006) Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng Des Sel 19(10):453–460CrossRefGoogle Scholar
  15. 15.
    Markova SV, Golz S, Frank LA, Kalthof B, Vysotski ES (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. J Biol Chem 279(5):3212–3217CrossRefGoogle Scholar
  16. 16.
    Borisova VV, Frank LA, Markova SV, Burakova LP, Vysotski ES (2008) Recombinant Metridia luciferase isoforms: expression, refolding and applicability for in vitro assay. Photochem Photobiol Sci 7:1025–1031CrossRefGoogle Scholar
  17. 17.
    Verhaegen M, Christopoulos TK (2002) Overexpression, purification and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74:4378–4385CrossRefGoogle Scholar
  18. 18.
    Nakajima Y, Kobayashi K, Yamagishi K, Enomoto T, Ohmiya Y (2004) cDNA cloning and characterization of a secreted luciferase from the luminous japanese ostracod, Cypridina noctiluca. Biosci Biotechnol Biochem 68:565–570CrossRefGoogle Scholar
  19. 19.
    Wu C, Kawasaki K, Ogawa Y, Yoshida Y, Ohgiya S, Ohmiya Y (2007) Preparation of biotinylated Cypridina luciferase and its use in bioluminescent enzyme immunoassay. Anal Chem 79:1634–1638CrossRefGoogle Scholar
  20. 20.
    Wu C, Irie S, Yamamoto S, Ohmiya Y (2009) A bioluminescent enzyme immunoassay for prostaglandin E2 using Cypridina luciferase. Luminescence 24:131–133CrossRefGoogle Scholar
  21. 21.
    Liu ZJ, Vysotski ES, Chen CJ, Rose JP, Lee J, Wang BC (2000) Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure. Protein Sci 9:2085–2093CrossRefGoogle Scholar
  22. 22.
    Head JF, Inouy S, Teranishi K, Shimomura O (2000) The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature 405:372–376CrossRefGoogle Scholar
  23. 23.
    Markova SV, Vysotski ES, Blinks JR, Burakova LP, Wang BC, Lee J (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41:2227–2236CrossRefGoogle Scholar
  24. 24.
    Frank LA (2010) Ca2+-regulated photoproteins: effective immunoassay reporters. Sensors 10:11287–11300CrossRefGoogle Scholar
  25. 25.
    Sgoutas DS, Tuten TE, Verras AA, Love A, Barton EG (1995) AquaLite bioluminescence assay of thyrotropin in serum evaluated. Clin Chem 41:1637–1643Google Scholar
  26. 26.
    Fasco MJ, Treanor CP, Spivack S, Figge HL, Kaminsky LS (1995) Quantitative RNA-polymerase chain reaction-DNA analysis by capillary electrophoresis and laser-induced fluorescence. Anal Biochem 224:140–147CrossRefGoogle Scholar
  27. 27.
    Vlieger AM, Medenblik AM, van Gijlswijk RP, Tanke HJ, van der Ploeg M, Gratama JW, Raap AK (1992) Quantitation of polymerase chain reaction products by hybridization-based assays with fluorescent, colorimetric, or chemiluminescent detection. Anal Biochem 205:1–7CrossRefGoogle Scholar
  28. 28.
    Xiao L, Chumfu Y, Nelson CO (1996) Quantitation of RT-PCR amplified cytokine mRNA by aequorin-based bioluminescence immunoassay. J Immunol Methods 199:139–147CrossRefGoogle Scholar
  29. 29.
    Galvan B, Christopoulos TK (1996) Bioluminescence hybridization assay using recombinant aequorin. Application to the detection of prostate-specific antigen mRNA. Anal Chem 68:3545–3550CrossRefGoogle Scholar
  30. 30.
    Siddigi AM, Jennings VM, Kidd MR, Actor JK, Hunter RL (1996) Evaluation of electrochemiluminescence and bioluminescence-based assays for quantitating specific DNA. J Clin Lab Anal 10:423–431CrossRefGoogle Scholar
  31. 31.
    Actor JK (2000) Bioluminescent quantitation and detection of gene expression during infectious disease. Comb Chem High Throughput Screen 3(4):277–288Google Scholar
  32. 32.
    Guenthner PC, Hart CE (1998) Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system. Biotechniques 24(5):810–816Google Scholar
  33. 33.
    Song X, Coombes BK, Mahony JB (2000) Quantitation of Chlamidia trachomatis 16S rRNA using NASBA amplification and bioluminescent microtiter plate assay. Comb Chem High Throughput Screen 3(4):303–313CrossRefGoogle Scholar
  34. 34.
    Coombes BK, Mahony JB (2000) Nucleic acid sequence based amplification (NASBA) of Chlamydia pneumoniae major outer membrane protein (ompA) mRNA with bioluminescent detection. Comb Chem High Throughput Screen 3(4):315–327CrossRefGoogle Scholar
  35. 35.
    Doleman L, Davies L, Rowe L, Moschou EA, Deo S, Daunert S (2007) Bioluminescence DNA hybridization assay for Plasmodium falciparum based on the photoprotein aequorin. Anal Chem 79:4149–4153CrossRefGoogle Scholar
  36. 36.
    Cissell KA, Rahimi Y, Shrestha S (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325CrossRefGoogle Scholar
  37. 37.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336CrossRefGoogle Scholar
  38. 38.
    Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803CrossRefGoogle Scholar
  39. 39.
    Tsiakalou V, Petropoulou M, Ioannou PC (2009) Bioluminometric assay for relative quantification of mutant allele burden: application to the oncogenic somatic point mutation JAK2 V617F. Anal Chem 81:8596–8602CrossRefGoogle Scholar
  40. 40.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397CrossRefGoogle Scholar
  41. 41.
    Iliadi A, Petropoulou M, Ioannou PC, Christopoulos TK, Anagnostopoulos NI, Kanavakis E, Traeger-Synodinos J (2011) Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer. Anal Chem 83:6545–6551CrossRefGoogle Scholar
  42. 42.
    Ito K, Nishimura W, Maeda M, Gomi K, Inouye S, Arakawa H (2007) Highly sensitive and rapid tandem bioluminescent immunoassay using aequorin labeled Fab fragment and biotinylated firefly luciferase. Anal Chem Acta 58:245–251CrossRefGoogle Scholar
  43. 43.
    Ohkuma H, Abe K, Kosaka Y, Maeda M (2000) Detection of luciferase having two kinds of luminescent colour based on optical filter procedure: application to an enzyme immunoassay. Luminescence 15:21–27CrossRefGoogle Scholar
  44. 44.
    Frank LA, Borisova VV, Markova SV, Malikova NP, Stepanyuk GA, Vysotski ES (2008) Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay. Anal Bioanal Chem 391:2891–2896CrossRefGoogle Scholar
  45. 45.
    Kudryavtsev AN, Krasitskaya VV, Petunin AI, Burakov AY, Frank LA (2012) Simultaneous bioluminescent immunoassay of serum total and IgG-bound prolactins. Anal Chem 84:3119–3124CrossRefGoogle Scholar
  46. 46.
    Krasitskaya VV, Kudryavtsev AN, Shimomura O, Frank LA (2013) Obelin mutants as reporters in bioluminescent dual-analyte binding assay. Anal Methods 5:636–640CrossRefGoogle Scholar
  47. 47.
    Tannous BA, Verhaegen M, Christopoulos TK, Kourakli A (2003) Combined flash- and glow-type chemiluminescent reactions for high-throughput genotyping of biallelic polymorphisms. Anal Biochem 320:266–272CrossRefGoogle Scholar
  48. 48.
    Konstantou J, Ioannou PC, Christopoulos TK (2007) Genotyping of single nucleotide polymorphisms by primer extension reaction and dual-analyte bio/chemiluminometric assay. Anal Bioanal Chem 388:1747–1754CrossRefGoogle Scholar
  49. 49.
    Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41CrossRefGoogle Scholar
  50. 50.
    Elenis DS, Ioannou PC, Christopoulos TK (2009) Quadruple-allele chemiluminometric assay for simultaneous genotyping of two single-nucleotide polymorphisms. Analyst 134:725–730CrossRefGoogle Scholar
  51. 51.
    Ozava T, Yoshimura H, Kim SB (2013) Advances in fluorescence and bioluminescence imaging. Anal Chem 85:590–609CrossRefGoogle Scholar
  52. 52.
    Xia Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20:37–44CrossRefGoogle Scholar
  53. 53.
    Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123CrossRefGoogle Scholar
  54. 54.
    Arai R, Nakagawa H, Tsumoto K, Mahoney W, Kumagai I, Ueda H, Nagamune T (2001) Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer. Anal Biochem 289:77–81CrossRefGoogle Scholar
  55. 55.
    Li F, Yu J, Zhang Z, Cui Z, Wang D, Wei H, Zhang XE (2013) Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance. Talanta 109:141–146CrossRefGoogle Scholar
  56. 56.
    Cissel KA, Campbell S, Deo SK (2008) Rapid, single-step nucleic acid detection. Anal Bioanal Chem 391:2577–2581CrossRefGoogle Scholar
  57. 57.
    Kumar M, Zhang D, Broyles D, Deo SK (2011) A rapid, sensitive and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system. Biosens Bioelectron 30:133–139CrossRefGoogle Scholar
  58. 58.
    Yamakawa Y, Ueda H, Kitayama A, Nakamune T (2002) Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J Biosci Bioenq 93(6):537–542Google Scholar
  59. 59.
    Shekhman SS, Ghosh I (2011) Split-protein systems: beyond binary protein-protein interaction. Curr Opin Chem Biol 15(6):789–797CrossRefGoogle Scholar
  60. 60.
    Mie M, Thuy NPB, Kobatake E (2012) Development of a homogeneous immunoassay system using protein A fusion fragmented Renilla luciferase. Analyst 137:1085–1089CrossRefGoogle Scholar
  61. 61.
    Ohmuro-Matsuyama Y, Chung C-I, Ueda H (2013) Demonstration of protein-fragment complementation assay using purified firefly luciferase fragment. BMC Biotechnol 13:31–39CrossRefGoogle Scholar
  62. 62.
    Kim SB, Takenaka Y, Torimura M (2011) A bioluminescent probe for salivary cortisol. Bioconjug Chem. 22(9):1835–1841CrossRefGoogle Scholar
  63. 63.
    Scott SD, Hamorsky KT, Ensor CM (2011) Cyclic AMP receptor protein-aequorin molecular switch for cyclic AMP. Bioconjug Chem 22(3):475–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Photobiology Laboratory, Institute of BiophysicsRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations