Detection of Bacteria with Bioluminescent Reporter Bacteriophage

  • Jochen Klumpp
  • Martin J. LoessnerEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 144)


Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.


Reporter bacteriophage Luciferase Pathogen detection Foodborne pathogens 



















  1. 1.
    Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511CrossRefGoogle Scholar
  2. 2.
    Hendrix RW, Hatfull GF, Smith MC (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257CrossRefGoogle Scholar
  3. 3.
    Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659CrossRefGoogle Scholar
  4. 4.
    Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451CrossRefGoogle Scholar
  5. 5.
    Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68:1102–1111Google Scholar
  6. 6.
    Hooton SP, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int J Food Microbiol 151(2):157–163Google Scholar
  7. 7.
    Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232CrossRefGoogle Scholar
  8. 8.
    Connerton PL, Timms AR, Connerton IF (2011) Campylobacter bacteriophages and bacteriophage therapy. J Appl Microbiol 111:255–265CrossRefGoogle Scholar
  9. 9.
    Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154:66–72CrossRefGoogle Scholar
  10. 10.
    Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487CrossRefGoogle Scholar
  11. 11.
    Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362CrossRefGoogle Scholar
  12. 12.
    Sarkis GJ, Jacobs WR Jr, Hatfull GF (1995) L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067CrossRefGoogle Scholar
  13. 13.
    Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In: Schlomerich J, Andreesen R, Kapp A, Ernst M (eds) Bioluminescence and Chemiluminescence: New Perspectives. Wiley, New York, pp 463–472Google Scholar
  14. 14.
    Goodridge L, Griffiths M (2002) Reporter bacteriophage assays as a mean to detect foodborne pathogenic bacteria. Food Res Int 35:863–870CrossRefGoogle Scholar
  15. 15.
    Hagens S, de Wouters T, Vollenweider P, Loessner MJ (2011) Reporter bacteriophage A511:celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells. Bacteriophage 1:143–151CrossRefGoogle Scholar
  16. 16.
    Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46:365–369CrossRefGoogle Scholar
  17. 17.
    Oda M, Morita M, Unno H, Tanji Y (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534CrossRefGoogle Scholar
  18. 18.
    Wolber PK, Green RL (1990) Detection of bacteria by transduction of ice nucleation genes. Trends Biotechnol 8:276–279CrossRefGoogle Scholar
  19. 19.
    Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J Microbiol Methods 82:177–183CrossRefGoogle Scholar
  20. 20.
    Hazbon MH, Guarin N, Ferro BE, Rodriguez AL, Labrada LA, Tovar R, Riska PF, Jacobs WR Jr (2003) Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 41:4865–4869CrossRefGoogle Scholar
  21. 21.
    Riska PF, Jacobs WR Jr (1998) The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol Biol 101:431–455Google Scholar
  22. 22.
    Boylan MO, Pelletier J, Dhepagnon S, Trudel S, Sonenberg N, Meighen EA (1989) Construction of a fused LuxAB gene by site-directed mutagenesis. J Biolumin Chemilumin 4:310–316CrossRefGoogle Scholar
  23. 23.
    Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Natl Acad Sci USA 86:6528–6532CrossRefGoogle Scholar
  24. 24.
    Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Gene 81:335–347CrossRefGoogle Scholar
  25. 25.
    Kuhn J, Suissa M, Wyse J, Cohen I, Weiser I, Reznick S, Lubinsky-Mink S, Stewart G, Ulitzur S (2002) Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int J Food Microbiol 74:229–238CrossRefGoogle Scholar
  26. 26.
    Ripp S, Jegier P, Johnson CM, Brigati JR, Sayler GS (2008) Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem 391:507–514CrossRefGoogle Scholar
  27. 27.
    Ripp S, Jegier P, Birmele M, Johnson CM, Daumer KA, Garland JL, Sayler GS (2006) Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J Appl Microbiol 100:488–499CrossRefGoogle Scholar
  28. 28.
    Schofield DA, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2012) Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers. Appl Environ Microbiol 78:3592–3598CrossRefGoogle Scholar
  29. 29.
    Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS ONE 5:e11720CrossRefGoogle Scholar
  30. 30.
    Ulitzur S, Kuhn J (2000) Construction of lux bacteriophages and the determination of specific bacteria and their antibiotic sensitivities. Methods Enzymol 305:543–557CrossRefGoogle Scholar
  31. 31.
    Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol 191:7206–7215CrossRefGoogle Scholar
  32. 32.
    Kilcher S, Loessner MJ, Klumpp J (2010) Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 192:5441–5453CrossRefGoogle Scholar
  33. 33.
    Schmuki MM, Erne D, Loessner MJ, Klumpp J (2012) Bacteriophage P70: Unique morphology and unrelatedness to other Listeria bacteriophages. J Virol 86:13099–13102CrossRefGoogle Scholar
  34. 34.
    Klumpp J, Fouts DE, Sozhamannan S (2012) Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:190–199CrossRefGoogle Scholar
  35. 35.
    Klumpp J, Fouts DE, Sozhamannan S (2013) Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct Genomic 12(4): 354–365Google Scholar
  36. 36.
    Casjens S, Gilcrease EB (2009) Determining dna packaging stragety by analysis of the termini of the chromosomes in tailed-bacteriophage virions. In: Clokie MRJ, Kropinski A (eds) Bacteriophages—Methods and protocols. vol 2: molecular and applied aspects. Humana Press, New York, pp 91–111Google Scholar
  37. 37.
    Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a Model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190:5753–5765CrossRefGoogle Scholar
  38. 38.
    Loessner MJ, Rees CE, Stewart GS, Scherer S (1996) Construction of luciferase reporter bacteriophage A511:luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140Google Scholar
  39. 39.
    Loessner MJ, Rudolf M, Scherer S (1997) Evaluation of luciferase reporter bacteriophage A511:luxAB for detection of Listeria monocytogenes in contaminated foods. Appl Environ Microbiol 63:2961–2965Google Scholar
  40. 40.
    Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharma Biotechnol 11:58–68CrossRefGoogle Scholar
  41. 41.
    Anany H, Chen W, Pelton R, Griffiths MW (2011) Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 77:6379–6387CrossRefGoogle Scholar
  42. 42.
    Naidoo R, Singh A, Arya SK, Beadle B, Glass N, Tanha J, Szymanski CM, Evoy S (2012) Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage 2:15–24CrossRefGoogle Scholar
  43. 43.
    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. The Analyst 136:486–492CrossRefGoogle Scholar
  44. 44.
    Castilho BA, Olfson P, Casadaban MJ (1984) Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol 158:488–495Google Scholar
  45. 45.
    Ulitzur S, Kuhn J (1989) Detection and/or identification of microorganisms i a test sample using bioluminescence or other exogenous genetically introduced marker, Patent C12N15/52, 06/739,957 USPTOGoogle Scholar
  46. 46.
    Kuhn J, Suissa M, Chiswell D, Azriel A, Berman B, Shahar D, Reznick S, Sharf R, Wyse J, Bar-On T, Cohen I, Giles R, Weiser I, Lubinsky-Mink S, Ulitzur S (2002) A bacteriophage reagent for Salmonella: molecular studies on Felix 01. Int J Food Microbiol 74:217–227CrossRefGoogle Scholar
  47. 47.
    Chen J, Griffiths M (1996) Salmonella detection in egg using Lux + bacteriophages. J Food Prot 59:908–914Google Scholar
  48. 48.
    Stewart G, Smith T, Denyer S (1989) Genetic engineering for bioluminescent bacteria. Food Sci Technol Today 3: 19-22Google Scholar
  49. 49.
    Turpin P, Maycroft KA, Bedford J, Rowlands CL (1993) A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhimurium in environmental samples. Lett Appl Microbiol 16: 24-27Google Scholar
  50. 50.
    Thouand G, Vachon P, Liu S, Dayre M, Griffiths MW (2008) Optimization and validation of a simple method using P22:luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J Food Prot 71:380–385Google Scholar
  51. 51.
    Kodikara CP, Crew HH, Stewart GS (1991) Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 83:261–266CrossRefGoogle Scholar
  52. 52.
    Waddell TE, Poppe C (2000) Construction of mini-Tn10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol Lett 182:285–289CrossRefGoogle Scholar
  53. 53.
    Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640CrossRefGoogle Scholar
  54. 54.
    Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511Google Scholar
  55. 55.
    McLauchlin J, Mitchell RT, Smerdon WJ, Jewell K (2004) Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int J Food Microbiol 92:15–33CrossRefGoogle Scholar
  56. 56.
    Loessner MJ, Busse M (1990) Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918Google Scholar
  57. 57.
    Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561CrossRefGoogle Scholar
  58. 58.
    Hagens S, Loessner MJ (2007) Luciferase Reporter Bacteriophages. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of Biosensors and Biochips. Wiley, HobokenGoogle Scholar
  59. 59.
    Pearson RE, Jurgensen S, Sarkis GJ, Hatfull GF, Jacobs WR Jr (1996) Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183:129–136CrossRefGoogle Scholar
  60. 60.
    Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822CrossRefGoogle Scholar
  61. 61.
    Piuri M, Jacobs WR Jr, Hatfull GF (2009) Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS ONE 4:e4870CrossRefGoogle Scholar
  62. 62.
    Banaiee N, Bobadilla-Del-Valle M, Bardarov S Jr, Riska PF, Small PM, Ponce-De-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J (2001) Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol 39:3883–3888CrossRefGoogle Scholar
  63. 63.
    Banaiee N, Bobadilla-del-Valle M, Riska PF, Bardarov S Jr, Small PM, Ponce-de-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J (2003) Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J Med Microbiol 52:557–561CrossRefGoogle Scholar
  64. 64.
    Rondon L, Piuri M, Jacobs WR Jr, de Waard J, Hatfull GF, Takiff HE (2011) Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842CrossRefGoogle Scholar
  65. 65.
    Schofield DA, Molineux IJ, Westwater C (2011) ‘Bioluminescent’ reporter phage for the detection of category A bacterial pathogens. J Vis Exp 53:e2740Google Scholar
  66. 66.
    Schofield DA, Westwater C (2009) Phage-mediated bioluminescent detection of Bacillus anthracis. J Appl Microbiol 107:1468–1478CrossRefGoogle Scholar
  67. 67.
    Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894CrossRefGoogle Scholar
  68. 68.
    Schofield DA, Molineux IJ, Westwater C (2012) Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage. J Microbiol Methods 90:80–82CrossRefGoogle Scholar
  69. 69.
    Schofield D, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2013) “Light-tagged” bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengineered 4:50–54CrossRefGoogle Scholar
  70. 70.
    Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR Jr (1997) Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239Google Scholar
  71. 71.
    Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76:5745–5756CrossRefGoogle Scholar
  72. 72.
    Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73:1992–2000CrossRefGoogle Scholar
  73. 73.
    Favrin SJ, Jassim SA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int J Food Microbiol 85:63–71CrossRefGoogle Scholar
  74. 74.
    Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ (2013) Long tail fibers of the novel broad host range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol Microbiol 87:818–834CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland

Personalised recommendations