Advertisement

Biochemistry and Genetics of Bacterial Bioluminescence

  • Paul Dunlap
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 144)

Abstract

Bacterial light production involves enzymes—luciferase, fatty acid reductase, and flavin reductase—and substrates—reduced flavin mononucleotide and long-chain fatty aldehyde—that are specific to bioluminescence in bacteria. The bacterial genes coding for these enzymes, luxA and luxB for the subunits of luciferase; luxC, luxD, and luxE for the components of the fatty acid reductase; and luxG for flavin reductase, are found as an operon in light-emitting bacteria, with the gene order, luxCDABEG. Over 30 species of marine and terrestrial bacteria, which cluster phylogenetically in Aliivibrio, Photobacterium, and Vibrio (Vibrionaceae), Shewanella (Shewanellaceae), and Photorhabdus (Enterobacteriaceae), carry lux operon genes. The luminescence operons of some of these bacteria also contain genes involved in the synthesis of riboflavin, ribEBHA, and in some species, regulatory genes luxI and luxR are associated with the lux operon. In well-studied cases, lux genes are coordinately expressed in a population density-responsive, self-inducing manner called quorum sensing. The evolutionary origins and physiological function of bioluminescence in bacteria are not well understood but are thought to relate to utilization of oxygen as a substrate in the luminescence reaction.

Keywords

Bioluminescence Bacterial luciferase Aliivibrio Photobacterium Vibrio lux genes 

Abbreviations

acyl-HSL

Acyl-homoserine lactone

FMNH2

Reduced flavin mononucleotide

Kb

Kilobases (thousand nucleotides)

kD

Kilodaltons

Mb

Megabases (million nucleotides)

RCHO

Long-chain fatty aldehyde

RCOOH

Long-chain fatty acid

References

  1. 1.
    Adar YY, Simaan M, Ulitzur S (1992) Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins. J Bacteriol 174:7138–7143Google Scholar
  2. 2.
    Adar YY, Ulitzur S (1993) GroESL proteins facilitate binding of externally added inducer by LuxR protein–containing E. coli cells. J Biolumin Chemilumin 8:261–266Google Scholar
  3. 3.
    Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309Google Scholar
  4. 4.
    Akhurst RJ, Boemare NE (1986) A non–luminescent strain of Xenorhabdus luminescens. J Gen Microbiol 132:1917–1922Google Scholar
  5. 5.
    Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL, De Vos P, Dunlap PV, Ast JC, Dunlap PV (2004) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181:352–361Google Scholar
  6. 6.
    Ast JC, Dunlap PV (2005) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7:1641–1654Google Scholar
  7. 7.
    Ast JC, Dunlap PV (2007a) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep–sea fish. Int J Syst Evol Microbiol 57:2073–2078Google Scholar
  8. 8.
    Ast JC, Urbanczyk H, Dunlap PV (2007) Natural merodiploidy of the lux–rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 189:6148–6158Google Scholar
  9. 9.
    Ast JC, Urbanczyk H, Dunlap PV (2009) Multi–gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio. Syst Appl Microbiol 32:379–386Google Scholar
  10. 10.
    Baldwin TO, Ziegler MM, Powers DA (1979) Covalent structure of subunits of bacterial luciferase NH2– terminal sequence demonstrates subunit homology. Proc Natl Acad Sci USA 76:4887–4889Google Scholar
  11. 11.
    Baldwin TO, Treat ML, Daubner SC (1990) Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of yellow fluorescent protein. Biochemistry 29:5509–5515Google Scholar
  12. 12.
    Bang SS, Baumann P, Baumann L (1978) Phenotypic characterization of Photobacterium logei (sp. nov.), a species related to P. fischeri. Curr Microbiol 1:285–288Google Scholar
  13. 13.
    Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587Google Scholar
  14. 14.
    Bassler B, Miller MB (2013) Quorum sensing. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds), The Prokaryotes (4th ed)—Prokaryotic Communities and Ecophysiology. Springer, Berlin, pp 495–509. doi: 10.1007/978-3-642-30123-0_60
  15. 15.
    Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045Google Scholar
  16. 16.
    Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi, sequence and function of genes regulating expression of luminescence. Molec Microbiol 9:773–786Google Scholar
  17. 17.
    Bassler BL, Wright M, Silverman MR (1994a) Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Molec Microbiol 12:403–412Google Scholar
  18. 18.
    Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi, sequence and function of genes encoding a second sensory pathway. Molec Microbiol 13:273–286Google Scholar
  19. 19.
    Baumann P, Baumann L (1981) The marine Gram–negative eubacteria genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1302–1331Google Scholar
  20. 20.
    Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4:127–132Google Scholar
  21. 21.
    Boemare NE, Akhurst RJ, Mourant RG (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of Entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255Google Scholar
  22. 22.
    Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 17:3701–3706Google Scholar
  23. 23.
    Boisvert H, Chatelain R, Bassot J-M (1967) Étude d’un Photobacterium isolé de l’organe lumineux des poissons Leiognathidae. Ann Inst Pasteur Paris 112:520–524Google Scholar
  24. 24.
    Boyle R (1668) Experiments concerning the relation between light and air in shining wood and fish. Philos Trans 2:581–600Google Scholar
  25. 25.
    Budsberg KJ, Wimpee CF, Braddock JF (2003) Isolation and identification of Photobacterium phosphoreum from an unexpected niche migrating salmon. Appl Environ Microbiol 69:6938–6942Google Scholar
  26. 26.
    Callahan SM, Dunlap PV (2000) LuxR– and acylhomoserine– lactone–controlled non–lux genes define a quorum–sensing regulon in Vibrio fischeri. J Bacteriol 182:2811–2822Google Scholar
  27. 27.
    Cao J-G, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676Google Scholar
  28. 28.
    Chatterjee J, Miyamoto CM, Meighen EA (1996) Autoregulation of luxR the Vibrio harveyi lux–operon activator functions as a repressor. Molec Microbiol 20:415–425Google Scholar
  29. 29.
    Chatterjee J, Miyamoto CM, Zouzoulas A, Lang BF, Skouris N, Meighen EA (2002) MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Molec Microbiol 46:101–111Google Scholar
  30. 30.
    Chen P-F, Tu S-C, Hagag N, Wu FY-H, Wu C-W (1985) Isolation and characterization of a cyclic AMP receptor protein from luminous Vibrio harveyi cells. Arch Biochem Biophys 241:425–431Google Scholar
  31. 31.
    Chen X, Schauder S, Potier N, Dorsselaer AV, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum–sensing signal containing boron. Nature 415:545–549Google Scholar
  32. 32.
    Czyż A, Plata K, Wegrzyn G (2003) Stimulation of DNA repair as an evolutionary drive for bacterial luminescence. Luminescence 18:140–144Google Scholar
  33. 33.
    Daubner SC, Astorga AM, Leisman GB, Baldwin TO (1987) Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Proc Natl Acad Sci 84:8912–8916Google Scholar
  34. 34.
    Devine JH, Countryman C, Baldwin TO (1988) Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27:837–842Google Scholar
  35. 35.
    Dolan KM, Greenberg EP (1992) Evidence that GroEL, not σ32, is involved in transcription regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol 174:5132–5135Google Scholar
  36. 36.
    Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313Google Scholar
  37. 37.
    Dunlap PV (1989) Regulation of luminescence by cyclic AMP in cya–like and crp–like mutants of Vibrio fischeri. J Bacteriol 171:1199–1202Google Scholar
  38. 38.
    Dunlap PV, Ast JC (2005) Genomic and phylogenetic characterization of the luminous bacteria symbiotic with the deep–sea fish Chlorophthalmus albatrossis (Aulopiformes Chlorophthalmidae). Appl Environ Microbiol 71:930–939Google Scholar
  39. 39.
    Dunlap PV, Greenberg EP (1985) Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein. J Bacteriol 164:45–50Google Scholar
  40. 40.
    Dunlap PV, Greenberg EP (1988) Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein–LuxR protein regulatory circuit. J Bacteriol 170:4040–4046Google Scholar
  41. 41.
    Dunlap PV, Greenberg EP (1991) Role of intercellular chemical communication in the Vibrio fischerimonocentrid fish symbiosis. In: Dworkin M (ed) Microbial Cell–Cell Interactions. American Society for Microbiology Washington, DC, pp 219–253Google Scholar
  42. 42.
    Dunlap PV, Kuo A (1992) Cell density–dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol 174:2440–2448Google Scholar
  43. 43.
    Dunlap PV, Ray JM (1989) Requirement for autoinducer in transcriptional negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli. J Bacteriol 171:3549–3552Google Scholar
  44. 44.
    Dunlap PV, Urbanczyk H (2013) Luminous bacteria. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds), The Prokaryotes (4th ed)—Prokaryotic Physiology and Biochemistry. Springer, Berlin, pp 495–528. doi: 10.1007/978-3-642-30141-4_75
  45. 45.
    Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T, Endo H (2007) Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23:507–523Google Scholar
  46. 46.
    Dunlap PV, Gould AL, Wittenrich ML, Nakamura M (2012) Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor. J Fish Biol 81:1340–1356Google Scholar
  47. 47.
    Eberhard A, Hinton JP, Zuck RM (1979) Luminous bacteria synthesize luciferase anaerobically. Arch Microbiol 121:277–282Google Scholar
  48. 48.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449Google Scholar
  49. 49.
    Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Analogs of the autoinducer of bioluminescence in Vibrio fischeri. Arch Microbiol 146:35–40Google Scholar
  50. 50.
    Eberhard A, Longin T, Widrig CA, Stranick SJ (1991) Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch Microbiol 155:294–297Google Scholar
  51. 51.
    Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158Google Scholar
  52. 52.
    Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence, isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781Google Scholar
  53. 53.
    Farmer JJ, Jorgensen JH, Grimont PAD, Akhurst RJ, Poinar GO, Pierce GV, Smith JA, Carger GP, Wilson K, Hickman-Brenner FW (1989) Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27:1594–1600Google Scholar
  54. 54.
    Fidopiastis PM, von Boletzky S, Ruby EG (1998) A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol 180:59–64Google Scholar
  55. 55.
    Fidopiastis PM, Sorum H, Ruby EG (1999) Cryptic luminescence in the cold–water fish pathogen Vibrio salmonicida. Arch Microbiol 171:205–209Google Scholar
  56. 56.
    Fidopiastis PM, Miyamoto CM, Jobling MG, Meighen EG, Ruby EG (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Molec Microbiol 45:131–143Google Scholar
  57. 57.
    Figge MJ, Robertson LA, Ast JC, Dunlap PV (2011) Historical microbiology: revival and phylogenetic characterization of luminous bacterial cultures of M. W. Beijerinck. FEMS Microbiol Ecol 78:463–472Google Scholar
  58. 58.
    Fischer–Le Saux M, Viallard V, Brunel B, Normand P, Boemare EN (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov., and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656Google Scholar
  59. 59.
    Fitzgerald JM (1977) Classification of luminous bacteria from the light organ of the Australian pinecone fish, Cleidopus gloriamaris. Arch Microbiol 112:153–156Google Scholar
  60. 60.
    Forst S, Nealson K (1996) Molecular biology of the symbiotic–pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43Google Scholar
  61. 61.
    Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp. Bugs that kill bugs. Ann Rev Microbiol 51:47–72Google Scholar
  62. 62.
    Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two–component response regulator involved in quorum sensing in Vibrio harveyi. Molec Microbiol 31:665–677Google Scholar
  63. 63.
    Freeman JA, Bassler BL (1999) Sequence and function of LuxU: a two–component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 191:899–906Google Scholar
  64. 64.
    Freeman JA, Lilley BN, Bassler BL (2000) A genetic analysis of the functions of LuxN: a two–component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Molec Microbiol 35:139–149Google Scholar
  65. 65.
    Fukasawa S, Dunlap PV (1986) Identification of luminous bacteria isolated from the light organ of the squid, Doryteuthis kensaki. J Agric Biol Chem 50:1645–1646Google Scholar
  66. 66.
    Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria the LuxR–LuxI family of cell density–responsive transcriptional regulators. J Bacteriol 176:269–275Google Scholar
  67. 67.
    Giard A, Billet A (1889) Observations sur la maladie phosphorescente des Talitres et autres crustaces. Compt Rend Biol Paris 41:593–597Google Scholar
  68. 68.
    Gilson L, Kuo A, Dunlap PV (1995) AinS and a new family of autoinducer synthesis proteins. J Bacteriol 177:6946–6951Google Scholar
  69. 69.
    Gomez-Gil B, Soto-Rodríguez S, García-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi–related isolates associated with diseased aquatic organisms. Microbiology 150:1769–1777Google Scholar
  70. 70.
    Greenberg EP (1997) Quorum sensing in Gram–negative bacteria. Amer Soc Microbiol News 63:371–377Google Scholar
  71. 71.
    Hanzelka BL, Parsek MR, Val DV, Dunlap PV, Cronan JE Jr, Greenberg EP (1999) Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181:5766–5770Google Scholar
  72. 72.
    Harvey EN (1940) Living light. Princeton University Press, PrincetonGoogle Scholar
  73. 73.
    Harvey EN (1952) Bioluminescence. Academic Press, New YorkGoogle Scholar
  74. 74.
    Harvey EN (1957) A history of luminescence from the earliest times until 1900. American Philosophical Society, PhiladelphiaGoogle Scholar
  75. 75.
    Hastings JW (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Molec Evol 19:309–317Google Scholar
  76. 76.
    Hastings JW (2012) Bioluminescence. Cell Physiology Sourcebook. doi:10:1016/B978-0-12-387738-3.00052-4Google Scholar
  77. 77.
    Hastings JW, Greenberg EP (1999) Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 181:2667–2669Google Scholar
  78. 78.
    Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1332–1345Google Scholar
  79. 79.
    Hastings JW, Potrikus CJ, Gupta SC, Kurfurst M, Makemson JC (1985) Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol 26:235–291Google Scholar
  80. 80.
    Haygood MG (1990) Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophaneron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes. Arch Microbiol 154:496–503Google Scholar
  81. 81.
    Haygood MG (1993) Light organ symbioses in fish. Crit Rev Microbiol 19:191–216Google Scholar
  82. 82.
    Haygood MG, Nealson KH (1985) Mechanisms of iron regulation of luminescence in Vibrio fischeri. J Bacteriol 162:209–216Google Scholar
  83. 83.
    Haygood MG, Distel DL (1993) Bioluminescent symbionts of flashlight fish and deep–sea anglerfish form unique lineages related to the genus Vibrio. Nature 363:154–156Google Scholar
  84. 84.
    Haygood MG, Distel DL, Herring PJ (1992) Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deepsea anglerfish. J Marine Biol Assoc UK 72:149–159Google Scholar
  85. 85.
    Hendrie MS, Hodgkiss W, Shewan JM (1970) The identification, taxonomy and classification of luminous bacteria. J Gen Microbiol 64:151–169Google Scholar
  86. 86.
    Hendry TA, Dunlap PV (2011) The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 61:834–843Google Scholar
  87. 87.
    Hendry TA, Dunlap PV (2014) Phylogenetic divergence between the obligate luminous symbionts of flashlight fishes demonstrates specificity of bacteria to host genera. Environ Microbiol Rep. doi: 10.1111/1758-2229.12135 (in press)
  88. 88.
    Hendry TA, deWet JR, Dunlap PV (2014) Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ Microbiol doi: 10.1111/1462-2920.12302 (in press)
  89. 89.
    Henke JM, Bassler BL (2004) Three parallel quorum–sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6904Google Scholar
  90. 90.
    Higgins DA, Pmianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886Google Scholar
  91. 91.
    Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willassen NP, Thomson NR (2008) The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genom 9:616Google Scholar
  92. 92.
    Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315Google Scholar
  93. 93.
    Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S, Endo H, Nakamura M, Dunlap PV (2007) Phylogenetic diversity and co–symbiosis in the bioluminescent symbioses of Photobacterium mandapamensis. Appl Environ Microbiol 73:3173–3182Google Scholar
  94. 94.
    Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214Google Scholar
  95. 95.
    Kasai S (2006) Freshwater bioluminescence in Vibrio albensis (Vibrio cholerae biovar albensis) NCIMB 41 is caused by a two–nucleotide deletion in luxO. J Biochem 139:471–482Google Scholar
  96. 96.
    Kasai S, Okada K, Hoshino A, Iida T, Honda T (2007) Lateral transfer of the lux gene cluster. J Biochem Tokyo 141:231–237Google Scholar
  97. 97.
    Kelly RC, Bolitho ME, Higgins DA, Lu W, Ng WL, Jeffrey PD, Rabinowitz JD, Semmelhack MF, Hughson FM, Bassler BL (2009) The Vibrio cholerae quorum–sensing autoinducer CAI–1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol 5:891–895Google Scholar
  98. 98.
    Kuo A, Callahan SM, Dunlap PV (1996) Modulation of luminescence operon expression by N–octanoyl–homoserine lactone in ainS mutants of Vibrio fischeri. J Bacteriol 178:971–976Google Scholar
  99. 99.
    Kuwata R, Yoshiga T, Yoshida M, Kondo E (2008) Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Microbes Infect 10:734–741Google Scholar
  100. 100.
    Lee CY, Meighen EA (1992) The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem Biophys Res Commun 186:690–697Google Scholar
  101. 101.
    Lee CY, O’Kane DJ, Meighen EA (1994) Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol 176:2100–2104Google Scholar
  102. 102.
    Lee J (1993) Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys Chem 48:149–158Google Scholar
  103. 103.
    Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi. Cell 118:69–82Google Scholar
  104. 104.
    Li L, Liu X, Yang W, Xu W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465Google Scholar
  105. 105.
    Li Z, Szittner R, Meighen EA (1993) Subunit interactions and the role of the luxA polypeptide in controlling thermal stability and catalytic properties in recombinant luciferase hybrids. Biochim Biophys Acta 1158:137–145Google Scholar
  106. 106.
    Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma–54. Molec Microbiol 36:940–954Google Scholar
  107. 107.
    Lin B, Wang Z, Malanoski AP, O’Grady EA, Wimpee CF, Vuddhakul V, Alves N Jr, Thompson FL, Gomez-Gil B, Voral GJ (2010) Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA–1116 and HY01 as Vibrio campbellii. Environ Microbiol Rep 2:81–89Google Scholar
  108. 108.
    Lin J-W, Chao Y-F, Weng S-F (1993) The lumazine protein–encoding gene in Photobacterium leiognathi is linked to the lux operon. Gene 126:153–154Google Scholar
  109. 109.
    Lin J-W, Yu K-Y, Chao Y-F, Weng S-F (1995) The lumQ gene is linked to the lumP gene and the lux operon in Photobacterium leiognathi. Biochem Biophys Res Commun 217:684–695Google Scholar
  110. 110.
    Lin J-W, Chao Y-F, Weng S-F (1996) Nucleotide sequence and functional analysis of the luxE gene encoding acyl–protein synthetase of the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun 228:764–773Google Scholar
  111. 111.
    Lin J-W, Yu K-Y, Chao Y-F, Weng S-F (1996) Regulatory region with putA gene of proline dehydrogenase that links to the lum and lux operons in Photobacterium leiognathi. Biochem Biophys Res Commun 219:868–875Google Scholar
  112. 112.
    Lin J-W, Chao Y-F, Weng S-F (1998) Characteristic analysis of the luxG gene encoding the probable flavin reductase that resides in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 246:446–452Google Scholar
  113. 113.
    Lin J-W, Chao Y-F, Weng S-F (2001) Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 284:587–595Google Scholar
  114. 114.
    Lin YH, Miyamoto C, Meighen EA (2000) Cloning and functional studies of a luxO regulator LuxT from Vibrio harveyi. Biochim Biophys Acta 1494:226–235Google Scholar
  115. 115.
    Lunder T, Sørum H, Holstad G, Steigerwalt AG, Mowinckel P, Brenner DJ (2000) Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with ‘winter ulcer’. Int J Syst Evol Microbiol 50:427–450Google Scholar
  116. 116.
    Makemson JC (1986) Luciferase–dependent oxygen consumption by bioluminescent vibrios. J Bacteriol 165:461–466Google Scholar
  117. 117.
    Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039Google Scholar
  118. 118.
    Makemson JC, Hastings JW (1982) Iron represses bioluminescence in Vibrio harveyi. Curr Microbiol 7:181–186Google Scholar
  119. 119.
    Manukhov IV, Khrul’nova SA, Baranova A, Zavilgelsky GB (2011) Comparative analysis of the lux operons in Aliivibrio logei KCh1 (a Kamchatka Isolate) and Aliivibrio salmonicida. J Bacteriol 193:3998–4001Google Scholar
  120. 120.
    McElroy WD, Seliger HH (1962) Origin and evolution of bioluminescence. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 91–101Google Scholar
  121. 121.
    Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142Google Scholar
  122. 122.
    Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:1–67Google Scholar
  123. 123.
    Meighen EA, Szittner RB (1992) Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. J Bacteriol 174:5371–5381Google Scholar
  124. 124.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199Google Scholar
  125. 125.
    Miyamoto CM, Chatterjee J, Swartzman E, Szittner R, Meighen EA (1996) The role of lux autoinducer in regulating luminescence in Vibrio harveyi control of luxR expression. Molec Microbiol 19:767–775Google Scholar
  126. 126.
    Miyamoto CM, Dunlap PV, Ruby EG, Meighen EA (2003) LuxO controls luxR expression in Vibrio harveyi evidence for a common regulatory mechanism in Vibrio. Molec Microbiol 48:537–548Google Scholar
  127. 127.
    Miyamoto CM, Graham AF, Meighen EA (1988) Nucleotide sequence of the luxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi. Nucl Acids Res 16:1551–1562Google Scholar
  128. 128.
    Miyamoto CM, Lin YH, Meighen EA (2000) Control of bioluminescence in Vibrio fischeri by the LuxO signal response regulator Molec. Microbiol 36:594–607Google Scholar
  129. 129.
    Miyashiro T, Wollenberg MS, Cao X, Oehlert D, Ruby EG (2010) A single qrr gene is necessary and sufficient for LuxO–mediated regulation in Vibrio fischeri. Molec Microbiol 77:1556–1567Google Scholar
  130. 130.
    Moore SA, James MN (1995) Structural refinement of the non–fluorescent flavoprotein from Photobacterium leiognathi at 160 A resolution. J Mol Biol 249:195–214Google Scholar
  131. 131.
    Müller-Breitkreutz K, Winkler UK (1993) Anaerobic expression of the Vibrio fischeri lux regulon in E. coli is Fnr–dependent. J Biolumin Chemilumin 8:108Google Scholar
  132. 132.
    Nealson KH (1977) Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol 112:73–79Google Scholar
  133. 133.
    Nealson KH, Hastings JW (1977) Low oxygen is optimal for luciferase synthesis in some bacteria. Ecological implications. Arch Microbiol 112:9–16Google Scholar
  134. 134.
    Nealson KH, Hastings JW (1979) Bacterial bioluminescence. Its control and ecological significance. Microbiol Rev 43:496–518Google Scholar
  135. 135.
    Nealson KH, Hastings JW (1992) The luminous bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin, pp 625–639Google Scholar
  136. 136.
    Nealson KH, Platt T, Hastings JW (1970) Cellular control of synthesis and activity of the bacterial luminescence system. J Bacteriol 104:313–322Google Scholar
  137. 137.
    Nealson KH, Eberhard A, Hastings JW (1972) Catabolite repression of bacterial bioluminescence, functional implications. Proc Natl Acad Sci USA 69:1073–1076Google Scholar
  138. 138.
    Nealson KH, Wimpee B, Wimpee C (1993) Identification of Vibrio splendidus as a member of the planktonic luminous bacteria from the Persian Gulf and Kuwait region with luxA probes. Appl Environ Microbiol 59:2684–2689Google Scholar
  139. 139.
    Nelson EJ, Tunsjø HS, Fidopiastis PM, Sørum H, Ruby EG (2007) A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol 73:1825–1833Google Scholar
  140. 140.
    Ng W-L, Bassler BL (2009) Bacterial quorum–sensing network architectures. Ann Rev Gen 43:197–222Google Scholar
  141. 141.
    Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538Google Scholar
  142. 142.
    O’Brien CH, Sizemore RK (1979) Distribution of the luminous bacterium Beneckea harveyi in a semitropical estuarine environment. Appl Environ Microbiol 38:933–938Google Scholar
  143. 143.
    O’Grady EA, Wimpee CF (2008) Mutations in the lux operon of natural dark mutants in the genus Vibrio. Appl Environ Microbiol 74:61–66Google Scholar
  144. 144.
    O’Kane DJ, Prasher DC (1992) Evolutionary origins of bacterial bioluminescence. Molec Microbiol 6:443–449Google Scholar
  145. 145.
    O’Kane DJ, Karle VA, Lee J (1985) Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescent properties. Biochemistry 24:1461–1467Google Scholar
  146. 146.
    O’Kane DJ, Woodward B, Lee J, Prasher DC (1991) Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci 88:1100–1104Google Scholar
  147. 147.
    Oliver JD, Roberts DM, White VK, Dry MA, Simpson LM (1986) Bioluminescence in a strain of the human pathogenic bacterium Vibrio vulnificus. Appl Environ Microbiol 52:1209–1211Google Scholar
  148. 148.
    Palmer LM, Colwell RR (1991) Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hybridization and polymerase chain reaction. Appl Environ Microbiol 57:1286–1293Google Scholar
  149. 149.
    Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ (1999) Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37:3647–3653Google Scholar
  150. 150.
    Petushkov VN, Lee J (1997) Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Eur J Biochem 245:790–796Google Scholar
  151. 151.
    Petushkov VN, Ketelaars M, Gibson BG, Lee J (1996) Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins bioluminescence effects of the aliphatic additive. Biochemistry 35:12086–12093Google Scholar
  152. 152.
    Pflüger E (1875) Ueber die Phosphorescenz verwesender Organismen. Arch ges Physiol Men Tiere 11:222–263Google Scholar
  153. 153.
    Pujalte MJ, Garay E (1986) Proposal of Vibrio mediterranei sp. nov. A new marine member of the Genus Vibrio. Int J Syst Bacteriol 36:278–281Google Scholar
  154. 154.
    Ramaiah N, Chun J, Ravel J, Straube WL, Hill RT, Colwell RR (2000) Detection of luciferase gene sequences in non–luminescent bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 33:27–34Google Scholar
  155. 155.
    Ramsey MM, Korgaonkar AK, Whiteley M (2009) Quorum sensing in bacteria. In: Schaechter M Encyclopedia of microbiology, 3rd edn. Academic Press, New YorkGoogle Scholar
  156. 156.
    Rees J-F, de Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM (1998) The origins of marine bioluminescence. Turning oxygen defense mechanisms into deep–sea communication tools. J Exp Biol 201:1211–1221Google Scholar
  157. 157.
    Reichelt JL, Baumman P (1973) Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 94:283–330Google Scholar
  158. 158.
    Reichelt JL, Nealson K, Hastings JW (1977) The specificity of symbiosis pony fish and luminescent bacteria. Arch Microbiol 112:157–161Google Scholar
  159. 159.
    Robertson LA, Figge MJ, Dunlap PV (2011) Beijerinck and the bioluminescent bacteria—microbiological experiments in the late 19th and early 20th centuries. FEMS Microbiol Ecol 75:185–194Google Scholar
  160. 160.
    Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fish a study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411Google Scholar
  161. 161.
    Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica, a model of symbiosis based on bacterial studies. Biol Bull 141:574–5867Google Scholar
  162. 162.
    Ruby EG, Nealson KH (1977) A luminous bacterium that emits yellow light. Science 196:432–434Google Scholar
  163. 163.
    Ruby EG, Nealson KH (1978) Seasonal changes in the species composition of luminous bacteria in nearshore seawater. Limnol Oceanogr 23:530–533Google Scholar
  164. 164.
    Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102:3004–3009Google Scholar
  165. 165.
    Sato Y, Shimizu S, Ohtaki A, Noguchi K, Miyatake H, Dohmae N, Sasaki S, Odaka M, Yohda M (2010) Crystal structures of the Lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7–dimethyl–8–(1_–D–ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J Bacteriol 192:127–133Google Scholar
  166. 166.
    Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell–to–cell signals in quorum sensing:acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI. Proc Natl Acad Sci USA 93:9505–9509Google Scholar
  167. 167.
    Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers biosynthesis of a novel quorum–sensing signal molecule. Molec Microbiol 41:463–476Google Scholar
  168. 168.
    Seliger HH (1987) The evolution of bioluminescence in bacteria. Photochem Photobiol 45:291–297Google Scholar
  169. 169.
    Shadel GS, Devine JH, Baldwin TO (1990) Control of the lux regulon of Vibrio fischeri. J Biolumin Chemilumin 5:99–106Google Scholar
  170. 170.
    Showalter RE, Martin MO, Silverman MR (1990) Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J Bacteriol 172:2946–2954Google Scholar
  171. 171.
    Silverman M, Martin M, Engebrecht J (1989) Regulation of luminescence in marine bacteria. In: Hopwood DA, Chater KF (eds) Genetics of bacterial diversity. Academic Press, London, pp 71–86Google Scholar
  172. 172.
    Small ED, Koka P, Lee J (1980) Lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum. Purification and characterization. J Biol Chem 255:8804–8810Google Scholar
  173. 173.
    Smith SK, Sutton DC, Fuerst JA, Reichelt JL (1991) Evaluation of the genus Listonella and reassignment of Listonella damsela (Love et al.) MacDonell and Colwell to the genus Photobacterium as Photobacterium damsela comb. nov. with an emended description. Int J Syst Bacteriol 41:529–534Google Scholar
  174. 174.
    Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562Google Scholar
  175. 175.
    Suadee C, Nijvipakul S, Svasti J, Entsch B, Ballou DP, Chaiyen P (2007) Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues. J Biochem 142:539–552Google Scholar
  176. 176.
    Sung ND, Lee CY (2004) Coregulation of lux genes and riboflavin genes in bioluminescent bacteria of Photobacterium phosphoreum. J Microbiol 42:194–199Google Scholar
  177. 177.
    Surete MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644Google Scholar
  178. 178.
    Swartzman E, Kapoor S, Graham AF, Meighen EA (1990) A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon. J Bacteriol 172:6797–6802Google Scholar
  179. 179.
    Swartzman E, Miyamoto C, Graham A, Meighen EA (1990) Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes. J Biol Chem 265:3513–3517Google Scholar
  180. 180.
    Swartzman E, Silverman M, Meighen EA (1992) The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol 174:7490–7493Google Scholar
  181. 181.
    Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein–coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 60:1921–1937Google Scholar
  182. 182.
    Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J, Hoste B, Swings J (2003) Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759Google Scholar
  183. 183.
    Tinikul R, Pitsawong W, Sucharitakul J, Nijvipakul S, Ballou DP, Chaiyen P (2013) The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Biochemistry 52:6834–6843Google Scholar
  184. 184.
    Tu KC, Bassler BL (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev 21:221–233Google Scholar
  185. 185.
    Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum–sensing response. Mol Cell 37:567–579Google Scholar
  186. 186.
    Ulitzur S, Dunlap PV (1995) Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochem Photobiol 62:625–632Google Scholar
  187. 187.
    Ulitzur S, Yashphe J (1975) An adenosine 3’,5’–monophosphate–requiring mutant of the luminous bacteria Beneckea harveyi. Biochim Biophys Acta 404:321–328Google Scholar
  188. 188.
    Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Micro 57:2823–2829Google Scholar
  189. 189.
    Urbanczyk H, Ast JC, Kaeding AJ, Oliver JD, Dunlap PV (2008) Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. J Bacteriol 190:3494–3504Google Scholar
  190. 190.
    Urbanczyk H, Ast JC, Dunlap PV (2011) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35:324–342Google Scholar
  191. 191.
    Urbanczyk H, Ogura Y, Hendry TA, Gould AL, Kiwaki N, Atkinson JT, Hayashi T, Dunlap PV (2011) Genome Sequence of Photobacterium mandapamensis svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor. J Bacteriol 193:3144–3145Google Scholar
  192. 192.
    Urbanczyk H, Furukawa T, Yamamoto Y, Dunlap PV (2012) Natural replacement of the vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologs. Environ Microbiol Rep 4:412–416Google Scholar
  193. 193.
    Urbanczyk H, Ogura Y, Hayashi T (2013) Taxonomic revision of Harveyi clade bacteria (family Vibrionaceae) base don analysis of whole genome sequences. Int J Syst Evol Microbiol 63:2742–2751Google Scholar
  194. 194.
    Walker EL, Bose JL, Stabb EV (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl Environ Microbiol 72:6600–6606Google Scholar
  195. 195.
    Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Ann Rev Microbiol 63:557–574Google Scholar
  196. 196.
    Waters CM, Bassler BL (2005) Quorum sensing cell–to–cell communication in bacteria. Ann Rev Cell Devel Biol 21:319–346Google Scholar
  197. 197.
    Waters CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20:2754–2767Google Scholar
  198. 198.
    Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL (2011) Mechanism of Vibrio cholerae autoinducer–1 biosynthesis. ACS Chem Biol 6:356–365Google Scholar
  199. 199.
    Widder EA (2010) Bioluminescence in the ocean origins of biological, chemical, and ecological diversity. Science 328:704–708Google Scholar
  200. 200.
    Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench-Constant RH (2009) Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genom 10:302Google Scholar
  201. 201.
    Wilson T, Hastings JW (1998) Bioluminescence. Ann Rev Cell Devel Biol 14:197–230Google Scholar
  202. 202.
    Wimpee CF, Nadeau T-L, Nealson KH (1991) Development of species–specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification. Appl Environ Microbiol 57:1319–1324Google Scholar
  203. 203.
    Wolfe CJ, Haygood MG (1991) Restriction fragment length polymorphism analysis reveals high levels of genetic divergence among the light organ symbionts of flashlight fish. Biol Bull 181:135–143Google Scholar
  204. 204.
    Wollenberg MS, Preheim SP, Polz MF, Ruby EG (2012) Polyphyly of non–bioluminescent Vibrio fischeri sharing a lux–locus deletion. Environ Microbiol 14:655–668Google Scholar
  205. 205.
    Yang Y, Yeh LP, Cao Y, Baumann L, Baumann P, Tang JS-E, Beaman B (1983) Characterization of marine luminous bacteria isolated off the coast of China and description of Vibrio orientalis sp. nov. Curr Microbiol 8:95–100Google Scholar
  206. 206.
    Yetinson T, Shilo M (1979) Seasonal and geographic distribution of luminous bacteria in the eastern Mediterranean Sea and the Gulf of Elat. Appl Environ Microbiol 37:1230–1238Google Scholar
  207. 207.
    Yoshizawa S, Wada M, Kita-Tsukamoto K, Ikemoto E, Yokota A, Kogure K (2009) Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1645–1649Google Scholar
  208. 208.
    Yoshizawa S, Wada M, Kita-Tsukamoto K, Yokota A, Kogure K (2009) Photobacterium aquimaris sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1438–1442Google Scholar
  209. 209.
    Yoshizawa S, Karatani H, Wada M, Yokota A, Kogure K (2010) Aliivibrio sifiae sp. nov., luminous marine bacteria isolated from seawater. J Gen Appl Microbiol 56:508–518Google Scholar
  210. 210.
    Yoshizawa S, Wada M, Yokota A, Kogure K (2010) Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from seawater. J Gen Appl Microbiol 56:499–507Google Scholar
  211. 211.
    Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci USA 109:853–857Google Scholar
  212. 212.
    Zenno H, Saigo K (1994) Identification of the genes encoding NAD(P)H–flavin oxidoreductases that are similar in sequence to Escherichiacoli Fre in four species of luminous bacteria Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol 176:3544–3551Google Scholar
  213. 213.
    Zenno H, Inouye S, Saigo K (1992) Does the luxG gene in luminous bacteria code for an NAD(P)H–FMN oxidoreductase? Genetics (Life Sci Adv) 11:85–91Google Scholar
  214. 214.
    Zenno H, Saigo K, Kanoh H, Inouye S (1994) Identification of the gene encoding the major NAD(P)H–flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol 176:3536–3543Google Scholar
  215. 215.
    Zo YG, Chokesajjawatee N, Grim C, Arakawa E, Watanabe H, Colwell RR (2009) Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol 75:135–146Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations