Skip to main content

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 144))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herring PJ (1987) Systematic distribution of bioluminescence in living organisms. J Biolumin Chemilumin 1:147–163

    CAS  Google Scholar 

  2. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493

    Google Scholar 

  3. Kubodera T, Koyama Y, Mori K (2007) Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc R Soc B 274:1029–1034

    Google Scholar 

  4. Harvey EN (1952) Bioluminescence. Academic Press, New York

    Google Scholar 

  5. Inamura O (1994) On the firefly squid (Hotaru-Ika no Hanashi). Uozu Aquarium, Uozu (in Japanese)

    Google Scholar 

  6. Blest AD (1957) The function of eyespot patterns in the Lepidoptera. Behaviour 11:209–256

    Google Scholar 

  7. Ohba N (2004) Mystery of fireflies. Yokosuka City Mus, Yokosuka (in Japanese)

    Google Scholar 

  8. Costa C, Zaragoza-Caballero S (2010) Phengodidae LeConte, 1861. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 126–135

    Google Scholar 

  9. Oba Y, Branham MA, Fukatsu T (2011) The terrestrial bioluminescent animals of Japan. Zool Sci 28:771–789

    CAS  Google Scholar 

  10. Morin JG (1986) “Firefleas” of the sea: luminescent signaling in marine ostracode crustaceans. Insect Behav Ecol 69:105–121

    Google Scholar 

  11. Herring PJ (1988) Copepod luminescence. Hydrobiologia 167(168):183–195

    Google Scholar 

  12. Underwood TJ, Tallamy DW, Pesek JD (1997) Bioluminescence in firefly larvae: A test of the aposematic display hypothesis (Coleoptera: Lampyridae). J Insect Behav 10:365–370

    Google Scholar 

  13. Knight M, Glor R, Smedley SR, González A, Adler K, Eisner T (1999) Firefly toxicosis in lizards. J Chem Ecol 25:1981–1986

    CAS  Google Scholar 

  14. Ohba N, Hidaka T (2002) Reflex bleeding of fireflies and prey-predator relationship. Sci Rept Yokosuka City Mus 49:1–12 (in Japanese with English title and abstract)

    Google Scholar 

  15. De Cock R, Matthysen E (2003) Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav Ecol 14:103–108

    Google Scholar 

  16. Fu X, Vencl FV, Ohba N, Meyer-Rochow VB, Lei C, Zhang Z (2007) Structure and function of the eversible glands of the aquatic firefly, Luciola leii (Coleoptera: Lampyridae). Chemoecology 17:117–124

    CAS  Google Scholar 

  17. Lloyd JE (1973) Firefly parasites and predators. Coleopterists Bull 27:91–106

    Google Scholar 

  18. Sagegami-Oba R, Takahashi N, Oba Y (2007) The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 400:104–113

    CAS  Google Scholar 

  19. Long SM, Lewis S, Jean-Louis L, Ramos G, Richmond J, Jakob EM (2012) Firefly flashing and jumping spider predation. Animal Behav 83:81–86

    Google Scholar 

  20. Branham MA, Wenzel JW (2003) The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19:1–22

    Google Scholar 

  21. De Cock R, Matthysen E (1999) Aposematism and bioluminescence: experimental evidence from glow-worm larvae (Coleoptera: Lampyridae). Evol Ecol 13:619–639

    Google Scholar 

  22. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  23. Sivinski J (1981) The nature and possible functions of luminescence in Coleoptera larvae. Coleopterists Bull 35:167–179

    Google Scholar 

  24. Raj JS (1957) An undescribed luminous beetle larva from South India. J Bombay Natl Hist Soc 54:788–789

    Google Scholar 

  25. Rosenberg J, Meyer-Rochow VB (2009) Luminescent myriapoda: a brief review. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 139–146

    Google Scholar 

  26. Marek P, Papaj D, Yeager J, Molina S, Moore W (2011) Bioluminescent aposematism in millipedes. Cur Biol 21:R680–R681

    CAS  Google Scholar 

  27. Davenport D, Wootton DM, Cushing JE (1952) The biology of the Sierra luminous millipede, Luminodesmus sequoiae, Loomis and Davenport. Biol Bull 102:100–110

    Google Scholar 

  28. Hudson BJ, Parsons GA (1997) Giant millipede ‘burns’ and the eye. Trans Roy Soc Trop Med Hygiene 91:183–185

    CAS  Google Scholar 

  29. Houdemer ME (1926) Mote sur un Myriapode vésicant du Tonkin, Ostostigmus aculeatus Haase. Bull Mus Hist Nat Paris 32:213–214 (in French)

    Google Scholar 

  30. Futuyma DJ (2005) Evolution. Sinauer, Massachusetts

    Google Scholar 

  31. Ohba N, Meyer-Rochow VB (2012) Insect species co-existing with the Papua New Guinea firefly Pteroptyx effulgens share aspects of appearance and behaviour. Lampyrid 2:127–137

    Google Scholar 

  32. Crowson RA (1981) The biology of the Coleoptera. Academic Press, New York

    Google Scholar 

  33. Lev-Yadun S, Halpern M (2007) Ergot (Claviceps purpurea)—An aposematic fungus. Symbiosis 43:105–108

    Google Scholar 

  34. Sivinski J (1981) Arthropods attracted to luminous fungi. Psyche 88:383–390

    Google Scholar 

  35. Mallefet J (2009) Echinoderm bioluminescence: where, how and why do so many ophiuroids glow? In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 67–83

    Google Scholar 

  36. Grober MS (1988) Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim Behav 36:493–501

    Google Scholar 

  37. Wilson T, Hastings JW (2013) Bioluminescence: living lights, lights for living. Harvard University Press, Massachusetts

    Google Scholar 

  38. Abe K (1994) The light of marine fireflies. Chikuma Shobo, Tokyo (in Japanese)

    Google Scholar 

  39. Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci USA 109:853–857

    CAS  Google Scholar 

  40. Andrews CC, Karl DM, Small LF, Fowler SW (1984) Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature 307:539–541

    CAS  Google Scholar 

  41. Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411

    CAS  Google Scholar 

  42. Richards AM (1960) Observations on the New Zealand glow-worm Arachnocampa luminosa (Skuse) 1890. Tran R Soc New Zealand 88:559–574

    Google Scholar 

  43. Broadley A, Stringer IAN (2009) Larval behaviour of the New Zealand glowworm, Arachnocampa luminosa (Diptera: Keroplatidae), in bush and caves. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 325–355

    Google Scholar 

  44. Willis RE, White CR, Merritt DJ (2011) Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. J Comp Physiol B 181:477–486

    Google Scholar 

  45. Fulton BB (1941) A luminous fly larva with spider traits (Diptera, Mycetophilidae). Ann Entomol Soc Am 34:289–302

    Google Scholar 

  46. Sivinski J (1982) Prey attraction by luminous larvae of the fungus gnat Orfelia fultoni. Ecol Entomol 7:443–446

    Google Scholar 

  47. Matile L (1997) Phylogeny and evolution of the larval diet in the Sciaroidea (Diptera, Bibionomorpha) since the Mesozoic. Mém Mus Natn Hist Nat 173:273–303

    Google Scholar 

  48. Lloyd JE (1975) Aggressive mimicry in Photuris fireflies: signal repertories by femmes fatales. Science 187:452–453

    CAS  Google Scholar 

  49. Eisner T, Goetz MA, Hill DE, Smedley SR, Meinwald J (1997) Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc Natl Acad Sci USA 94:9723–9728

    CAS  Google Scholar 

  50. Eisner T, Wiemer DF, Haynes LW, Meinwald J (1978) Lucibufagins: defensive steroids from the fireflies Photinus ignitus and P. marginellus (Coleoptera: Lampyridae). Proc Natl Acad Sci USA 75:905–908

    CAS  Google Scholar 

  51. Lewis SM, Cratsley CK (2008) Flash signal evolution, mate choice, and predation in fireflies. Annu Rev Entomol 53:293–321

    CAS  Google Scholar 

  52. Redford KH (1982) Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Revta bras Zool S Paulo 1:31–34

    Google Scholar 

  53. Meyer-Rochow VB, Liddle AR (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc R Soc B 233:293–319

    Google Scholar 

  54. Lloyd JE (1983) Bioluminescence and communication in insects. Ann Rev Entomol 28:131–160

    Google Scholar 

  55. Ohba N (2004) Flash communication systems of Japanese fireflies. Integ Comp Biol 44:225–233

    CAS  Google Scholar 

  56. Haneda Y (1985) Luminous organisms. Kouseisha-kouseikaku, Tokyo (in Japanese)

    Google Scholar 

  57. Stolz U, Velez S, Wood KV, Wood M, Feder JL (2003) Darwinian natural selection for orange bioluminescent color in a Jamaican click beetle. Proc Natl Acad Sci USA 100:14955–14959

    CAS  Google Scholar 

  58. Hoffmann KH (1984) Environmental aspects of insect bioluminescence. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin, pp 225–245

    Google Scholar 

  59. Meyer-Rochow VB, Eguchi E (1984) Thoughts on the possible function and origin of bioluminescence in the New Zealand glowworm Arachnocampa luminosa (Diptera: Keroplatidae), based on electrophysiological recordings of spectral responses from the eyes of male adults. New Zealand Entomol 8:111–119

    Google Scholar 

  60. Meyer-Rochow VB (1990) The New Zealand glowworm. Waitomo Caves Mus, Waitomo Caves

    Google Scholar 

  61. Broadley RA (2012) Notes on pupal behaviour, eclosion, mate attraction, copulation and predation of the New Zealand glowworm Arachnocampa luminosa (Skuse) (Diptera: Keroplatidae), at Waitomo. N Zld Ent 35:1–9

    Google Scholar 

  62. Morin JG, Harrington A, Nealson K, Krieger N, Baldwin TO, Hastings JW (1975) Light for all reasons: Versatility in the behavioral repertoire of the flashlight fish. Science 190:74–76

    Google Scholar 

  63. Meyer-Rochow VB (1976) Womit und warum Tiere leuchten. Selecta 10:972–974 (in German)

    Google Scholar 

  64. Chakrabarty P, Davis MP, Smith WL, Berquist R, Gledhill KM, Frank LR, Sparks JS (2011) Evolution of the light organ system in ponyfishes (Teleostei: Leiognathidae). J Morphol 272:704–721

    Google Scholar 

  65. Young RE (1983) Oceanic bioluminescence: an overview of general functions. Bull Mar Sci 33:829–845

    Google Scholar 

  66. Herring PJ (2007) Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J Mar Biol Ass UK 87:829–842

    CAS  Google Scholar 

  67. Dahlgren U (1916) Production of light by animals. J Franklin Inst 181:525–556

    Google Scholar 

  68. Young RE, Roper CFE (1977) Intensity regulation of bioluminescence during countershading in living midwater animals. Fish Bull 75:239–252

    Google Scholar 

  69. Case JF, Warner J, Barnes AT, Lowenstine M (1977) Bioluminescence of lantern fish (Myctophidae) in response to changes in light intensity. Nature 265:179–181

    CAS  Google Scholar 

  70. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704–708

    CAS  Google Scholar 

  71. Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333–3344

    CAS  Google Scholar 

  72. Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science 225:512–514

    CAS  Google Scholar 

  73. Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vis Res 39:2817–2832

    CAS  Google Scholar 

  74. Meyer-Rochow VB, Baburina V, Smirnov S (1982) Histological observations on the eyes of the two luminescent fishes Photoblepharon palpebratus (Boddaert) and Anomalops katoptron (Blkr.). Zool Anz (Jena) 209:65–72

    Google Scholar 

  75. O’Kane DJ, Lingle WL, Porter D, Wampler JE (1990) Spectral analysis of bioluminescence of Panellus stypticus. Mycologia 82:607–616

    Google Scholar 

  76. Woods WA Jr, Hendrickson H, Mason J, Lewis SM (2007) Energy and predation costs of firefly courtship signals. Am Nat 170:702–708

    Google Scholar 

  77. Herring PJ (1994) Luminous fungi. Mycologist 8:181–183

    Google Scholar 

  78. Haneda Y (1963) Further studies on a luminous land snail, Quantula striata, in Malaya. Sci Rept Yokosuka City Mus 8:1–9

    Google Scholar 

  79. Counsilman JJ, Ong PP (1988) Responses of the luminescent land snail Dyakia (Quantula) striata to natural and artificial lights. J Ethol 6:1–8

    Google Scholar 

  80. Noll F (1888) Über das Leuchten der Schistostega osmundacea Schimp. Arbeiten Bot Inst Würzburg 3:477–488 (in Germany)

    Google Scholar 

  81. Oba Y (2009) On the origin of beetle luminescence. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 277–290

    Google Scholar 

  82. Lloyd JE (1978) Insect bioluminescence. In: Herring PJ (ed) Bioluminescence in action. Academic Press, New York

    Google Scholar 

  83. Costa C, Lawrence JF, Rosa SP (2010) Elateridae Leach, 1815. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 75–103

    Google Scholar 

  84. Yeates DK, Wiegmann BM, Courtney GW, Meier R, Lambkin C, Pape T (2007) Phylogeny and systematics of Diptera: two decades of progress and prospects. Zootaxa 1668:565–590

    Google Scholar 

  85. Viviani VR, Hastings JW, Wilson T (2002) Two bioluminescent Diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems. Photochem Photobiol 75:22–27

    CAS  Google Scholar 

  86. Zompro O, Fritzsche I (1999) Lucihormetica fenestrata n. gen., n. sp., the first record of luminescence in an orthopteroid insect (Dictyoptera: Blaberidae: Blaberinae: Brachycolini). Amazoniana 15:211–219

    Google Scholar 

  87. Vršanský P, Chorvát D, Fritzsche I, Hain M, Ševěík R (2012) Light-mimicking cockroaches indicate tertiary origin of recent terrestrial luminescence. Naturwissenschaften 99:739–749

    Google Scholar 

  88. Merritt DJ (2013) Standards of evidence for bioluminescence in cockroaches. Naturwissenschaften 100:697–698

    CAS  Google Scholar 

  89. Goemans G (2006) The Fulgoridae (Hemiptera, Fulgoromorpha) of Guatemala. In: Cano EB (ed) Biodiversidad de Guatemala, vol 1. Pub Univ del Vall de Guatemala, Guatemala, pp 337–344

    Google Scholar 

  90. Wood KV (1995) The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem Photobiol 62:662–673

    CAS  Google Scholar 

  91. Bocakova M, Bocak L, Hunt T, Teraväinen M, Vogler AP (2007) Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics 23:477–496

    Google Scholar 

  92. Timmermans MJTN, Vogler AP (2012) Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic Elateriform beetles (Dryopoidea). Mol Phylogenet Evol 63:299–304

    Google Scholar 

  93. Sagegami-Oba R, Oba Y, Ôhira H (2007) Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol Phylogenet Evol 42:410–421

    CAS  Google Scholar 

  94. Douglas H (2011) Phylogenetic relationships of Elateridae inferred form adult morphology, with special reference to the position of Cardiophorinae. Zootaxa 2900:1–45

    Google Scholar 

  95. Parker SP (1982) Synopsis and classification of living organisms, vol. 1, 2. McGraw-Hill, New York

    Google Scholar 

  96. Kirk PM, Cannon PF, Minter DM, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  97. Desjardin DE, Oliveira AG, Stevani CV (2008) Fungi bioluminescence revisited. Photochem Photobiol Sci 7:170–182

    CAS  Google Scholar 

  98. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore

    Google Scholar 

  99. Oliveira AG, Desjardin DE, Perry BA, Stevani CV (2012) Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem Photobiol Sci 11:848–852

    CAS  Google Scholar 

  100. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    CAS  Google Scholar 

  101. Lloyd JE (1971) Bioluminescent communication in insects. An Rev Entomol 16:97–122

    Google Scholar 

  102. Rota E (2009) Lights on the ground: a historical survey of light production in the Oligochaeta. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 105–138

    Google Scholar 

  103. Sivinski J, Forrest T (1983) Luminous defense in an earthworm. Florida Entomol 66:517

    Google Scholar 

  104. Oba Y, Furuhashi M, Bessho M, Sagawa S, Ikeya H, Inouye S (2013) Bioluminescence of a firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the Japanese firefly, Luciola lateralis. Photochem Photobiol Sci 12:854–863

    CAS  Google Scholar 

  105. Hastings JW, Morin JG (1991) Bioluminescence. In: Prosser CL (ed) Neural and integrative animal physiology. Wiley-Liss, New York, pp 131–170

    Google Scholar 

  106. Meyer-Rochow VB, Moore S (1988) Biology of Latia neritoides Gray 1850 (Gastropoda, Pulmonata, Basommatophora): the only light-producing freshwater snail in the world. Int Revue ges Hydrobiol 73:21–42

    Google Scholar 

  107. Fu X, Ballantyne L (2009) Larval respiration system and evolution in aquatic fireflies (Coleoptera: Lampyridae: Luciolinae). In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 243–253

    Google Scholar 

  108. Haneda Y (1955) Luminous organisms of Japan and Far East. In: Johnson FH (ed) The luminescence of biological systems. American Association for the Advancement of Science, Washington DC, pp 335–385

    Google Scholar 

  109. Houbrick RS (1987) Anatomy, reproductive biology, and phylogeny of the Planaxidae (Cerithiacea: Prosobranchia). Smithon Contrib Zool 445:i–iii+1–57

    Google Scholar 

  110. Ponder WF (1988) Bioluminescence in Hinea braziliana (Lamarck) (Gastropoda: Planaxidae). J Moll Stud 54:361

    Google Scholar 

  111. Deheyn DD, Wilson NG (2011) Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail. Proc R Soc B 278:2112–2121

    Google Scholar 

  112. Marshall BA (1997) A luminescent eulimid (Mollusca: Gastropoda) from New Zealand. Moll Res 18:69–72

    Google Scholar 

  113. Yamaguchi H (1970) On the earthworm (Mimizu no Hanashi). Hokuryukan, Tokyo (in Japanese)

    Google Scholar 

  114. Kanda S (1938) The luminescence of Pontodrilus matsushimensis. Rigakukai 36:1–7 (in Japanese)

    Google Scholar 

  115. Morin JG (1983) Coastal bioluminescence: patterns and functions. Bull Mar Sci 33:787–817

    Google Scholar 

  116. Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW (1989) Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 111:7607–7611

    CAS  Google Scholar 

  117. Nakamura H, Musicki B, Kishi Y, Shimomura O (1988) Structure of the light emitter in krill (Euphausia pacifica) bioluminescence. J Am Chem Soc 110:2683–2685

    CAS  Google Scholar 

  118. Nakamura H, Oba Y, Murai A (1993) Synthesis and absolute configuration of the ozonolysis product of krill fluorescent compound F. Tetrahedron Lett 34:2779–2782

    CAS  Google Scholar 

  119. Dunlap JC, Hastings JW, Shimomura O (1980) Crossreactivity between the light-emitting systems of distantly related organisms: novel type of light-emitting compound. Proc Natl Acad Sci USA 77:1394–1397

    CAS  Google Scholar 

  120. Herring PJ (1985) Bioluminescence in the Crustacea. J Crustacean Biol 5:557–573

    Google Scholar 

  121. Morin JG (2011) Based on a review of the data, use of the term ‘cypridinid’ solves the Cypridina/Vargula dilemma for naming the constituents of the luminescent system of ostracods in the family Cypridinidae. Luminescence 26:1–4

    Google Scholar 

  122. Oba Y, Tsuduki H, Kato S, Ojika M, Inouye S (2004) Identification of the luciferin-luciferase system and quantification of coelenterazine by mass spectrometry in the deep-sea luminous ostracod Conchoecia pseudodiscophora. ChemBioChem 5:1495–1499

    CAS  Google Scholar 

  123. Haneda Y, Johnson FH, Shimomura O (1966) The origin of luciferin in the luminous ducts of Parapriacanthus ransonneti, Pempheris klunzingeri, and Apogon ellioti. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, Massachusetts

    Google Scholar 

  124. Tsuji FI, Haneda Y, Lynch RV III, Sugiyama N (1971) Luminescence cross-reactions of Porichthys luciferin and theories on the origin of luciferin in some shallow-water fishes. Comp Biochem Physiol 40A:163–179

    Google Scholar 

  125. Haneda Y, Johnson FH, Sie EH-C (1958) Luciferin and luciferase extracts of a fish, Apogon marginatus, and their luminescent cross-reactions with those of a crustacean, Cypridina hilgendorfii. Biol Bull 115:336

    Google Scholar 

  126. Haneda Y, Johnson FH (1958) The luciferin-luciferase reaction in a fish, Parapriacanthus beryciformis, of newly discovered luminescence. Proc Natl Acad Sci USA 44:127–129

    CAS  Google Scholar 

  127. Haneda Y, Tsuji FI, Sugiyama N (1969) Luminescent systems in apogonid fishes from the Philippines. Science 165:188–190

    CAS  Google Scholar 

  128. Haneda Y, Tsuji FI, Sugiyama N (1969) Newly observed luminescence in apogonid fishes from the Philippines. Sci Rept Yokosuka City Mus 15:1–9 + 2 plt

    Google Scholar 

  129. Tominaga Y (1963) A revision of the fishes of the family Pempheridae of Japan. J Fac Sci Univ Tokyo, Section IV Zoology 10:269–290

    Google Scholar 

  130. Mooi RD, Jubb RN (1996) Descriptions of two new species of the genus Pempheris (Pisces: Pempherididae) from Australia, with a provisional key to Australian species. Rec Australian Mus 48:117–130

    Google Scholar 

  131. Johnson FH, Sugiyama N, Shimomura O, Saiga Y, Haneda Y (1961) Crystalline luciferin from a luminescent fish, Parapriacanthus beryciformes. Proc Natl Acad Sci USA 47:486–489

    CAS  Google Scholar 

  132. Tsuji FI, Barnes AT, Case JF (1972) Bioluminescence in the marine teleost, Porichthys notatus, and its induction in a non-luminous form by Cypridina (ostracod) luciferin. Nature 237:515–516

    CAS  Google Scholar 

  133. Oba Y, Kato S, Ojika M, Inouye S (2002) Biosynthesis of luciferin in the sea firefly, Cypridina hilgendorfii: l-tryptophan is a component in Cypridina luciferin. Tetrahedron Lett 43:2389–2392

    CAS  Google Scholar 

  134. Kato S, Oba Y, Ojika M, Inouye S (2004) Identification of the biosynthetic units of Cypridina luciferin in Cypridina (Vargula) hilgendorfii by LC/ESI-TOF-MS. Tetrahedron 60:11427–11434

    CAS  Google Scholar 

  135. Kato S, Oba Y, Ojika M, Inouye S (2006) Stereoselective incorporation of isoleucine into Cypridina luciferin in Cypridina hilgendorfii (Vargula hilgendorfii). Biosci Biotechnol Biochem 70:1528–1532

    CAS  Google Scholar 

  136. Kato S, Oba Y, Ojika M, Inouye S (2007) Biosynthesis of Cypridina luciferin in Cypridina noctiluca. Heterocycles 72:673–676

    CAS  Google Scholar 

  137. Goto T, Fukatsu H (1969) Cypridina bioluminescence VII. Chemiluminescence in micelle solutions: a model system for Cypridina bioluminescence. Tetrahedron Lett 10:4299–4302

    Google Scholar 

  138. Beebe W (1937) Preliminary list of Bermuda deep-sea fish. Based on the collections from fifteen hundred metre-net hauls, made in an eight-mile circle South and Nonsuch Island. Bermuda. Zoologica NY 22:197–208

    Google Scholar 

  139. Dunlap PV, Urbanczyk H (2013) Luminous bacteria. In: Rosenberg E (ed) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 495–528

    Google Scholar 

  140. Herring PJ (2002) Marine microlights: the luminous marine bacteria. Microbiol Today 29:174–176

    Google Scholar 

  141. Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T, Endo H (2007) Phylogenetic analysis of host-symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23:507–532

    Google Scholar 

  142. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829

    CAS  Google Scholar 

  143. Meyer-Rochow VB (1976) Loss of bioluminescence in Anomalops katoptron due to starvation. Experientia 32:1175–1176

    Google Scholar 

  144. Haddock SHD, Case JF (1994) A bioluminescent chaetognath. Nature 367:225–226

    Google Scholar 

  145. Campbell AK, Herring PJ (1990) Imidazolopyrazine bioluminescence in copepods and other marine organisms. Mar Biol 104:219–225

    CAS  Google Scholar 

  146. Miya M, Nemoto T (1986) Reproduction, growth and vertical distribution of the mesopelagic fish Cyclothone pseudopallida (family Gonostomatidae). In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Proceedings of the second international conference on the Indo-Pacific fishes. The Ichthyological Society of Japan, Tokyo, pp 830–837

    Google Scholar 

  147. Mallefet J, Shimomura O (1995) Presence of coelenterazine in mesopelagic fishes from the Strait of Messina. Mar Biol 124:381–385

    Google Scholar 

  148. Frank TM, Widder EA, Latz MI, Case JF (1984) Dietary maintenance of bioluminescence in a deep-sea mysid. J Exp Biol 109:385–389

    Google Scholar 

  149. Haddock SHD, Rivers TJ, Robison BH (2001) Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci USA 98:11148–11151

    CAS  Google Scholar 

  150. Thomson CM, Herring PJ, Campbell AK (1995) Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis. J Mar Biol Ass UK 75:165–171

    CAS  Google Scholar 

  151. Buskey EJ, Stearns DE (1991) The effects of starvation on bioluminescence potential and egg release of the copepod Metridia longa. J Plankton Res 13:885–893

    Google Scholar 

  152. Oba Y, Kato S, Ojika M, Inouye S (2009) Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochem Biophys Res Commun 390:684–688

    CAS  Google Scholar 

  153. Mauchline J (1998) The biology of calanoid copepods: advances in marine biology, vol 33. Academic Press, San Diego

    Google Scholar 

  154. Padmavati G, Ikeda T, Yamaguchi A (2004) Life cycle, population structure and vertical distribution of Metridia spp. (Copepoda: Calanoida) in the Oyashio region (NW Pacific Ocean). Mar Ecol Prog Ser 270:181–198

    Google Scholar 

  155. Anderson OR (1980) Radiolaria. Springer, New York

    Google Scholar 

  156. Meyer-Rochow VB (1986) Luminescent Copepoda of the genus Metridia with special reference to the Antarctic Metridia gerlachei. New Zld Antarc Rec 7:1–8

    Google Scholar 

  157. Hirakawa K, Imamura A (1993) Seasonal abundance and life history of Metridia pacifica (Copepoda: Calanoida) in Toyama Bay, Southern Japan Sea. Bull Plankton Soc Japan 40:41–54

    Google Scholar 

  158. Hayashi S, Hirakawa K (1997) Diet composition of the firefly squid, Watasenia scintillans, from Toyama Bay, Southern Japan Sea. Bull Japan Sea Natl Fish Res Inst 47:57–66 (in Japanese with English title and abstract)

    Google Scholar 

  159. Campbell AK (2012) Darwin shines light on the evolution of bioluminescence. Luminescence 27:447–449

    CAS  Google Scholar 

  160. Johnsen S, Franck TM, Haddock SHD, Widder EA, Messing CG (2012) Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands. J Exp Biol 215:3335–3343

    Google Scholar 

  161. Ross DM (1959) The sea anemone (Calliactis parasitica) and the hermit crab (Eupagurus bernhardus). Nature 4693:1161–1162

    Google Scholar 

  162. Okamura O (1970) Studies on the macrouroid fishes of Japan: morphology, ecology and phylogeny. Rept Usa Mar Biol Station 17:1–179 + 5 plt

    Google Scholar 

  163. Kanda S (1935) Fireflies (Hotaru), Nippon Hakko Seibutsu Kenkyu Kai, Tokyo (in Japanese) (reprinted edition, 1981, Scientist Inc, Tokyo)

    Google Scholar 

  164. Burkenroad MD (1943) A possible function of bioluminescence. J Mar Res 2:161–164

    Google Scholar 

  165. Meyer-Rochow VB (2007) Glowworms: a review of Arachnocampa spp. and kin. Luminescence 22:251–265

    CAS  Google Scholar 

  166. Buck J (1988) Synchronous rhythmic flashing of fireflies. Part II. Q Rev Biol 63:265–289

    CAS  Google Scholar 

  167. Ohba N (1999) Synchronous flashing of the firefly, Pteroptyx effulgens, in Papua New Guinea. Sci Rept Yokosuka City Mus 46:33–40 (in Japanese with English title and abstract)

    Google Scholar 

  168. Anctil M, Case JF (1977) The caudal luminous organs of lanternfishes: general innervation and ultrastructure. Am J Anat 149:1–22

    CAS  Google Scholar 

  169. Widder EA (1998) A predatory use of counter illumination by the squaloid shark, Isistius brasiliensis. Env Biol Fish 53:267–273

    Google Scholar 

  170. Abrahams MV, Townsend LD (1993) Bioluminescence in dinoflagellates: a test of the burglar alarm hypothesis. Ecology 74:258–260

    Google Scholar 

  171. Oliveira AG, Stevani CV (2009) The enzymatic nature of fungal bioluminescence. Photochem Photobiol Sci 8:1416–1421

    CAS  Google Scholar 

  172. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    CAS  Google Scholar 

  173. Branham MA (2010) Lampyridae Latreille, 1817. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 141–149

    Google Scholar 

  174. Kawashima I, Lawrence JF, Branham MA (2010) Rhagophthalmidae Olivier, 1907. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 135–140

    Google Scholar 

Download references

Acknowledgments

The authors thank Victor B. Meyer-Rochow (Hachijo Island Geothermal Energy Museum and University of Oulu) for hints on the literature and for critical reading of the manuscript; Osamu Shimomura (Institute for Advanced Research Academy of Nagoya University), Hiromitsu Endo (Kochi University), Naohide Nakayama (Kochi University), Ken-ichi Onodera (Kochi University), Masashi Naito (Shizuoka University and Nagoya University), So Yamashita (Hachijo Town Council), Osamu Inamura (Uozu Aquarium), and Hiroshi Yoshida (Gose Industrial High School) for providing photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Oba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oba, Y., Schultz, D.T. (2014). Eco-Evo Bioluminescence on Land and in the Sea. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43385-0_1

Download citation

Publish with us

Policies and ethics