Advertisement

Eco-Evo Bioluminescence on Land and in the Sea

  • Yuichi Oba
  • Darrin T. Schultz
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 144)

Abstract

This review discusses the evolution of bioluminescence organisms that inhabit various environments based on the current understanding of their unique ecologies and biochemistries. As shown here, however, there are still many unanswered questions regarding the functions and mechanisms of bioluminescence, which should be investigated in further studies. To facilitate future research in this field, we introduce our recent attempt, the bioluminescent organism DNA barcode initiative. This genetic reference library will provide resources for other scientists to efficiently identify unstudied bioluminescent organisms, focus their biochemical and genetic research goals, and will generally promote bioluminescence as a field of scientific study.

Graphical Abstract

Keywords

Aposematism Coelenterazine Counter-illumination Cypridinid luciferin DNA barcoding Ecology Evolution Symbiotic luminescence 

Notes

Acknowledgments

The authors thank Victor B. Meyer-Rochow (Hachijo Island Geothermal Energy Museum and University of Oulu) for hints on the literature and for critical reading of the manuscript; Osamu Shimomura (Institute for Advanced Research Academy of Nagoya University), Hiromitsu Endo (Kochi University), Naohide Nakayama (Kochi University), Ken-ichi Onodera (Kochi University), Masashi Naito (Shizuoka University and Nagoya University), So Yamashita (Hachijo Town Council), Osamu Inamura (Uozu Aquarium), and Hiroshi Yoshida (Gose Industrial High School) for providing photographs.

References

  1. 1.
    Herring PJ (1987) Systematic distribution of bioluminescence in living organisms. J Biolumin Chemilumin 1:147–163Google Scholar
  2. 2.
    Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493Google Scholar
  3. 3.
    Kubodera T, Koyama Y, Mori K (2007) Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc R Soc B 274:1029–1034Google Scholar
  4. 4.
    Harvey EN (1952) Bioluminescence. Academic Press, New YorkGoogle Scholar
  5. 5.
    Inamura O (1994) On the firefly squid (Hotaru-Ika no Hanashi). Uozu Aquarium, Uozu (in Japanese)Google Scholar
  6. 6.
    Blest AD (1957) The function of eyespot patterns in the Lepidoptera. Behaviour 11:209–256Google Scholar
  7. 7.
    Ohba N (2004) Mystery of fireflies. Yokosuka City Mus, Yokosuka (in Japanese)Google Scholar
  8. 8.
    Costa C, Zaragoza-Caballero S (2010) Phengodidae LeConte, 1861. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 126–135Google Scholar
  9. 9.
    Oba Y, Branham MA, Fukatsu T (2011) The terrestrial bioluminescent animals of Japan. Zool Sci 28:771–789Google Scholar
  10. 10.
    Morin JG (1986) “Firefleas” of the sea: luminescent signaling in marine ostracode crustaceans. Insect Behav Ecol 69:105–121Google Scholar
  11. 11.
    Herring PJ (1988) Copepod luminescence. Hydrobiologia 167(168):183–195Google Scholar
  12. 12.
    Underwood TJ, Tallamy DW, Pesek JD (1997) Bioluminescence in firefly larvae: A test of the aposematic display hypothesis (Coleoptera: Lampyridae). J Insect Behav 10:365–370Google Scholar
  13. 13.
    Knight M, Glor R, Smedley SR, González A, Adler K, Eisner T (1999) Firefly toxicosis in lizards. J Chem Ecol 25:1981–1986Google Scholar
  14. 14.
    Ohba N, Hidaka T (2002) Reflex bleeding of fireflies and prey-predator relationship. Sci Rept Yokosuka City Mus 49:1–12 (in Japanese with English title and abstract)Google Scholar
  15. 15.
    De Cock R, Matthysen E (2003) Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav Ecol 14:103–108Google Scholar
  16. 16.
    Fu X, Vencl FV, Ohba N, Meyer-Rochow VB, Lei C, Zhang Z (2007) Structure and function of the eversible glands of the aquatic firefly, Luciola leii (Coleoptera: Lampyridae). Chemoecology 17:117–124Google Scholar
  17. 17.
    Lloyd JE (1973) Firefly parasites and predators. Coleopterists Bull 27:91–106Google Scholar
  18. 18.
    Sagegami-Oba R, Takahashi N, Oba Y (2007) The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 400:104–113Google Scholar
  19. 19.
    Long SM, Lewis S, Jean-Louis L, Ramos G, Richmond J, Jakob EM (2012) Firefly flashing and jumping spider predation. Animal Behav 83:81–86Google Scholar
  20. 20.
    Branham MA, Wenzel JW (2003) The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19:1–22Google Scholar
  21. 21.
    De Cock R, Matthysen E (1999) Aposematism and bioluminescence: experimental evidence from glow-worm larvae (Coleoptera: Lampyridae). Evol Ecol 13:619–639Google Scholar
  22. 22.
    Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Sivinski J (1981) The nature and possible functions of luminescence in Coleoptera larvae. Coleopterists Bull 35:167–179Google Scholar
  24. 24.
    Raj JS (1957) An undescribed luminous beetle larva from South India. J Bombay Natl Hist Soc 54:788–789Google Scholar
  25. 25.
    Rosenberg J, Meyer-Rochow VB (2009) Luminescent myriapoda: a brief review. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 139–146Google Scholar
  26. 26.
    Marek P, Papaj D, Yeager J, Molina S, Moore W (2011) Bioluminescent aposematism in millipedes. Cur Biol 21:R680–R681Google Scholar
  27. 27.
    Davenport D, Wootton DM, Cushing JE (1952) The biology of the Sierra luminous millipede, Luminodesmus sequoiae, Loomis and Davenport. Biol Bull 102:100–110Google Scholar
  28. 28.
    Hudson BJ, Parsons GA (1997) Giant millipede ‘burns’ and the eye. Trans Roy Soc Trop Med Hygiene 91:183–185Google Scholar
  29. 29.
    Houdemer ME (1926) Mote sur un Myriapode vésicant du Tonkin, Ostostigmus aculeatus Haase. Bull Mus Hist Nat Paris 32:213–214 (in French)Google Scholar
  30. 30.
    Futuyma DJ (2005) Evolution. Sinauer, MassachusettsGoogle Scholar
  31. 31.
    Ohba N, Meyer-Rochow VB (2012) Insect species co-existing with the Papua New Guinea firefly Pteroptyx effulgens share aspects of appearance and behaviour. Lampyrid 2:127–137Google Scholar
  32. 32.
    Crowson RA (1981) The biology of the Coleoptera. Academic Press, New YorkGoogle Scholar
  33. 33.
    Lev-Yadun S, Halpern M (2007) Ergot (Claviceps purpurea)—An aposematic fungus. Symbiosis 43:105–108Google Scholar
  34. 34.
    Sivinski J (1981) Arthropods attracted to luminous fungi. Psyche 88:383–390Google Scholar
  35. 35.
    Mallefet J (2009) Echinoderm bioluminescence: where, how and why do so many ophiuroids glow? In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 67–83Google Scholar
  36. 36.
    Grober MS (1988) Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim Behav 36:493–501Google Scholar
  37. 37.
    Wilson T, Hastings JW (2013) Bioluminescence: living lights, lights for living. Harvard University Press, MassachusettsGoogle Scholar
  38. 38.
    Abe K (1994) The light of marine fireflies. Chikuma Shobo, Tokyo (in Japanese)Google Scholar
  39. 39.
    Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci USA 109:853–857Google Scholar
  40. 40.
    Andrews CC, Karl DM, Small LF, Fowler SW (1984) Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature 307:539–541Google Scholar
  41. 41.
    Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411Google Scholar
  42. 42.
    Richards AM (1960) Observations on the New Zealand glow-worm Arachnocampa luminosa (Skuse) 1890. Tran R Soc New Zealand 88:559–574Google Scholar
  43. 43.
    Broadley A, Stringer IAN (2009) Larval behaviour of the New Zealand glowworm, Arachnocampa luminosa (Diptera: Keroplatidae), in bush and caves. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 325–355Google Scholar
  44. 44.
    Willis RE, White CR, Merritt DJ (2011) Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. J Comp Physiol B 181:477–486Google Scholar
  45. 45.
    Fulton BB (1941) A luminous fly larva with spider traits (Diptera, Mycetophilidae). Ann Entomol Soc Am 34:289–302Google Scholar
  46. 46.
    Sivinski J (1982) Prey attraction by luminous larvae of the fungus gnat Orfelia fultoni. Ecol Entomol 7:443–446Google Scholar
  47. 47.
    Matile L (1997) Phylogeny and evolution of the larval diet in the Sciaroidea (Diptera, Bibionomorpha) since the Mesozoic. Mém Mus Natn Hist Nat 173:273–303Google Scholar
  48. 48.
    Lloyd JE (1975) Aggressive mimicry in Photuris fireflies: signal repertories by femmes fatales. Science 187:452–453Google Scholar
  49. 49.
    Eisner T, Goetz MA, Hill DE, Smedley SR, Meinwald J (1997) Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc Natl Acad Sci USA 94:9723–9728Google Scholar
  50. 50.
    Eisner T, Wiemer DF, Haynes LW, Meinwald J (1978) Lucibufagins: defensive steroids from the fireflies Photinus ignitus and P. marginellus (Coleoptera: Lampyridae). Proc Natl Acad Sci USA 75:905–908Google Scholar
  51. 51.
    Lewis SM, Cratsley CK (2008) Flash signal evolution, mate choice, and predation in fireflies. Annu Rev Entomol 53:293–321Google Scholar
  52. 52.
    Redford KH (1982) Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Revta bras Zool S Paulo 1:31–34Google Scholar
  53. 53.
    Meyer-Rochow VB, Liddle AR (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc R Soc B 233:293–319Google Scholar
  54. 54.
    Lloyd JE (1983) Bioluminescence and communication in insects. Ann Rev Entomol 28:131–160Google Scholar
  55. 55.
    Ohba N (2004) Flash communication systems of Japanese fireflies. Integ Comp Biol 44:225–233Google Scholar
  56. 56.
    Haneda Y (1985) Luminous organisms. Kouseisha-kouseikaku, Tokyo (in Japanese)Google Scholar
  57. 57.
    Stolz U, Velez S, Wood KV, Wood M, Feder JL (2003) Darwinian natural selection for orange bioluminescent color in a Jamaican click beetle. Proc Natl Acad Sci USA 100:14955–14959Google Scholar
  58. 58.
    Hoffmann KH (1984) Environmental aspects of insect bioluminescence. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin, pp 225–245Google Scholar
  59. 59.
    Meyer-Rochow VB, Eguchi E (1984) Thoughts on the possible function and origin of bioluminescence in the New Zealand glowworm Arachnocampa luminosa (Diptera: Keroplatidae), based on electrophysiological recordings of spectral responses from the eyes of male adults. New Zealand Entomol 8:111–119Google Scholar
  60. 60.
    Meyer-Rochow VB (1990) The New Zealand glowworm. Waitomo Caves Mus, Waitomo CavesGoogle Scholar
  61. 61.
    Broadley RA (2012) Notes on pupal behaviour, eclosion, mate attraction, copulation and predation of the New Zealand glowworm Arachnocampa luminosa (Skuse) (Diptera: Keroplatidae), at Waitomo. N Zld Ent 35:1–9Google Scholar
  62. 62.
    Morin JG, Harrington A, Nealson K, Krieger N, Baldwin TO, Hastings JW (1975) Light for all reasons: Versatility in the behavioral repertoire of the flashlight fish. Science 190:74–76Google Scholar
  63. 63.
    Meyer-Rochow VB (1976) Womit und warum Tiere leuchten. Selecta 10:972–974 (in German)Google Scholar
  64. 64.
    Chakrabarty P, Davis MP, Smith WL, Berquist R, Gledhill KM, Frank LR, Sparks JS (2011) Evolution of the light organ system in ponyfishes (Teleostei: Leiognathidae). J Morphol 272:704–721Google Scholar
  65. 65.
    Young RE (1983) Oceanic bioluminescence: an overview of general functions. Bull Mar Sci 33:829–845Google Scholar
  66. 66.
    Herring PJ (2007) Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J Mar Biol Ass UK 87:829–842Google Scholar
  67. 67.
    Dahlgren U (1916) Production of light by animals. J Franklin Inst 181:525–556Google Scholar
  68. 68.
    Young RE, Roper CFE (1977) Intensity regulation of bioluminescence during countershading in living midwater animals. Fish Bull 75:239–252Google Scholar
  69. 69.
    Case JF, Warner J, Barnes AT, Lowenstine M (1977) Bioluminescence of lantern fish (Myctophidae) in response to changes in light intensity. Nature 265:179–181Google Scholar
  70. 70.
    Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704–708Google Scholar
  71. 71.
    Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333–3344Google Scholar
  72. 72.
    Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science 225:512–514Google Scholar
  73. 73.
    Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vis Res 39:2817–2832Google Scholar
  74. 74.
    Meyer-Rochow VB, Baburina V, Smirnov S (1982) Histological observations on the eyes of the two luminescent fishes Photoblepharon palpebratus (Boddaert) and Anomalops katoptron (Blkr.). Zool Anz (Jena) 209:65–72Google Scholar
  75. 75.
    O’Kane DJ, Lingle WL, Porter D, Wampler JE (1990) Spectral analysis of bioluminescence of Panellus stypticus. Mycologia 82:607–616Google Scholar
  76. 76.
    Woods WA Jr, Hendrickson H, Mason J, Lewis SM (2007) Energy and predation costs of firefly courtship signals. Am Nat 170:702–708Google Scholar
  77. 77.
    Herring PJ (1994) Luminous fungi. Mycologist 8:181–183Google Scholar
  78. 78.
    Haneda Y (1963) Further studies on a luminous land snail, Quantula striata, in Malaya. Sci Rept Yokosuka City Mus 8:1–9Google Scholar
  79. 79.
    Counsilman JJ, Ong PP (1988) Responses of the luminescent land snail Dyakia (Quantula) striata to natural and artificial lights. J Ethol 6:1–8Google Scholar
  80. 80.
    Noll F (1888) Über das Leuchten der Schistostega osmundacea Schimp. Arbeiten Bot Inst Würzburg 3:477–488 (in Germany)Google Scholar
  81. 81.
    Oba Y (2009) On the origin of beetle luminescence. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 277–290Google Scholar
  82. 82.
    Lloyd JE (1978) Insect bioluminescence. In: Herring PJ (ed) Bioluminescence in action. Academic Press, New YorkGoogle Scholar
  83. 83.
    Costa C, Lawrence JF, Rosa SP (2010) Elateridae Leach, 1815. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 75–103Google Scholar
  84. 84.
    Yeates DK, Wiegmann BM, Courtney GW, Meier R, Lambkin C, Pape T (2007) Phylogeny and systematics of Diptera: two decades of progress and prospects. Zootaxa 1668:565–590Google Scholar
  85. 85.
    Viviani VR, Hastings JW, Wilson T (2002) Two bioluminescent Diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems. Photochem Photobiol 75:22–27Google Scholar
  86. 86.
    Zompro O, Fritzsche I (1999) Lucihormetica fenestrata n. gen., n. sp., the first record of luminescence in an orthopteroid insect (Dictyoptera: Blaberidae: Blaberinae: Brachycolini). Amazoniana 15:211–219Google Scholar
  87. 87.
    Vršanský P, Chorvát D, Fritzsche I, Hain M, Ševěík R (2012) Light-mimicking cockroaches indicate tertiary origin of recent terrestrial luminescence. Naturwissenschaften 99:739–749Google Scholar
  88. 88.
    Merritt DJ (2013) Standards of evidence for bioluminescence in cockroaches. Naturwissenschaften 100:697–698Google Scholar
  89. 89.
    Goemans G (2006) The Fulgoridae (Hemiptera, Fulgoromorpha) of Guatemala. In: Cano EB (ed) Biodiversidad de Guatemala, vol 1. Pub Univ del Vall de Guatemala, Guatemala, pp 337–344Google Scholar
  90. 90.
    Wood KV (1995) The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem Photobiol 62:662–673Google Scholar
  91. 91.
    Bocakova M, Bocak L, Hunt T, Teraväinen M, Vogler AP (2007) Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics 23:477–496Google Scholar
  92. 92.
    Timmermans MJTN, Vogler AP (2012) Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic Elateriform beetles (Dryopoidea). Mol Phylogenet Evol 63:299–304Google Scholar
  93. 93.
    Sagegami-Oba R, Oba Y, Ôhira H (2007) Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol Phylogenet Evol 42:410–421Google Scholar
  94. 94.
    Douglas H (2011) Phylogenetic relationships of Elateridae inferred form adult morphology, with special reference to the position of Cardiophorinae. Zootaxa 2900:1–45Google Scholar
  95. 95.
    Parker SP (1982) Synopsis and classification of living organisms, vol. 1, 2. McGraw-Hill, New YorkGoogle Scholar
  96. 96.
    Kirk PM, Cannon PF, Minter DM, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CAB International, WallingfordGoogle Scholar
  97. 97.
    Desjardin DE, Oliveira AG, Stevani CV (2008) Fungi bioluminescence revisited. Photochem Photobiol Sci 7:170–182Google Scholar
  98. 98.
    Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, SingaporeGoogle Scholar
  99. 99.
    Oliveira AG, Desjardin DE, Perry BA, Stevani CV (2012) Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem Photobiol Sci 11:848–852Google Scholar
  100. 100.
    Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574Google Scholar
  101. 101.
    Lloyd JE (1971) Bioluminescent communication in insects. An Rev Entomol 16:97–122Google Scholar
  102. 102.
    Rota E (2009) Lights on the ground: a historical survey of light production in the Oligochaeta. In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 105–138Google Scholar
  103. 103.
    Sivinski J, Forrest T (1983) Luminous defense in an earthworm. Florida Entomol 66:517Google Scholar
  104. 104.
    Oba Y, Furuhashi M, Bessho M, Sagawa S, Ikeya H, Inouye S (2013) Bioluminescence of a firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the Japanese firefly, Luciola lateralis. Photochem Photobiol Sci 12:854–863Google Scholar
  105. 105.
    Hastings JW, Morin JG (1991) Bioluminescence. In: Prosser CL (ed) Neural and integrative animal physiology. Wiley-Liss, New York, pp 131–170Google Scholar
  106. 106.
    Meyer-Rochow VB, Moore S (1988) Biology of Latia neritoides Gray 1850 (Gastropoda, Pulmonata, Basommatophora): the only light-producing freshwater snail in the world. Int Revue ges Hydrobiol 73:21–42Google Scholar
  107. 107.
    Fu X, Ballantyne L (2009) Larval respiration system and evolution in aquatic fireflies (Coleoptera: Lampyridae: Luciolinae). In: Meyer-Rochow VB (ed) Bioluminescence in focus: a collection of illuminating essays. Research Signpost, Kerala, pp 243–253Google Scholar
  108. 108.
    Haneda Y (1955) Luminous organisms of Japan and Far East. In: Johnson FH (ed) The luminescence of biological systems. American Association for the Advancement of Science, Washington DC, pp 335–385Google Scholar
  109. 109.
    Houbrick RS (1987) Anatomy, reproductive biology, and phylogeny of the Planaxidae (Cerithiacea: Prosobranchia). Smithon Contrib Zool 445:i–iii+1–57Google Scholar
  110. 110.
    Ponder WF (1988) Bioluminescence in Hinea braziliana (Lamarck) (Gastropoda: Planaxidae). J Moll Stud 54:361Google Scholar
  111. 111.
    Deheyn DD, Wilson NG (2011) Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail. Proc R Soc B 278:2112–2121Google Scholar
  112. 112.
    Marshall BA (1997) A luminescent eulimid (Mollusca: Gastropoda) from New Zealand. Moll Res 18:69–72Google Scholar
  113. 113.
    Yamaguchi H (1970) On the earthworm (Mimizu no Hanashi). Hokuryukan, Tokyo (in Japanese)Google Scholar
  114. 114.
    Kanda S (1938) The luminescence of Pontodrilus matsushimensis. Rigakukai 36:1–7 (in Japanese)Google Scholar
  115. 115.
    Morin JG (1983) Coastal bioluminescence: patterns and functions. Bull Mar Sci 33:787–817Google Scholar
  116. 116.
    Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW (1989) Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 111:7607–7611Google Scholar
  117. 117.
    Nakamura H, Musicki B, Kishi Y, Shimomura O (1988) Structure of the light emitter in krill (Euphausia pacifica) bioluminescence. J Am Chem Soc 110:2683–2685Google Scholar
  118. 118.
    Nakamura H, Oba Y, Murai A (1993) Synthesis and absolute configuration of the ozonolysis product of krill fluorescent compound F. Tetrahedron Lett 34:2779–2782Google Scholar
  119. 119.
    Dunlap JC, Hastings JW, Shimomura O (1980) Crossreactivity between the light-emitting systems of distantly related organisms: novel type of light-emitting compound. Proc Natl Acad Sci USA 77:1394–1397Google Scholar
  120. 120.
    Herring PJ (1985) Bioluminescence in the Crustacea. J Crustacean Biol 5:557–573Google Scholar
  121. 121.
    Morin JG (2011) Based on a review of the data, use of the term ‘cypridinid’ solves the Cypridina/Vargula dilemma for naming the constituents of the luminescent system of ostracods in the family Cypridinidae. Luminescence 26:1–4Google Scholar
  122. 122.
    Oba Y, Tsuduki H, Kato S, Ojika M, Inouye S (2004) Identification of the luciferin-luciferase system and quantification of coelenterazine by mass spectrometry in the deep-sea luminous ostracod Conchoecia pseudodiscophora. ChemBioChem 5:1495–1499Google Scholar
  123. 123.
    Haneda Y, Johnson FH, Shimomura O (1966) The origin of luciferin in the luminous ducts of Parapriacanthus ransonneti, Pempheris klunzingeri, and Apogon ellioti. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, MassachusettsGoogle Scholar
  124. 124.
    Tsuji FI, Haneda Y, Lynch RV III, Sugiyama N (1971) Luminescence cross-reactions of Porichthys luciferin and theories on the origin of luciferin in some shallow-water fishes. Comp Biochem Physiol 40A:163–179Google Scholar
  125. 125.
    Haneda Y, Johnson FH, Sie EH-C (1958) Luciferin and luciferase extracts of a fish, Apogon marginatus, and their luminescent cross-reactions with those of a crustacean, Cypridina hilgendorfii. Biol Bull 115:336Google Scholar
  126. 126.
    Haneda Y, Johnson FH (1958) The luciferin-luciferase reaction in a fish, Parapriacanthus beryciformis, of newly discovered luminescence. Proc Natl Acad Sci USA 44:127–129Google Scholar
  127. 127.
    Haneda Y, Tsuji FI, Sugiyama N (1969) Luminescent systems in apogonid fishes from the Philippines. Science 165:188–190Google Scholar
  128. 128.
    Haneda Y, Tsuji FI, Sugiyama N (1969) Newly observed luminescence in apogonid fishes from the Philippines. Sci Rept Yokosuka City Mus 15:1–9 + 2 pltGoogle Scholar
  129. 129.
    Tominaga Y (1963) A revision of the fishes of the family Pempheridae of Japan. J Fac Sci Univ Tokyo, Section IV Zoology 10:269–290Google Scholar
  130. 130.
    Mooi RD, Jubb RN (1996) Descriptions of two new species of the genus Pempheris (Pisces: Pempherididae) from Australia, with a provisional key to Australian species. Rec Australian Mus 48:117–130Google Scholar
  131. 131.
    Johnson FH, Sugiyama N, Shimomura O, Saiga Y, Haneda Y (1961) Crystalline luciferin from a luminescent fish, Parapriacanthus beryciformes. Proc Natl Acad Sci USA 47:486–489Google Scholar
  132. 132.
    Tsuji FI, Barnes AT, Case JF (1972) Bioluminescence in the marine teleost, Porichthys notatus, and its induction in a non-luminous form by Cypridina (ostracod) luciferin. Nature 237:515–516Google Scholar
  133. 133.
    Oba Y, Kato S, Ojika M, Inouye S (2002) Biosynthesis of luciferin in the sea firefly, Cypridina hilgendorfii: l-tryptophan is a component in Cypridina luciferin. Tetrahedron Lett 43:2389–2392Google Scholar
  134. 134.
    Kato S, Oba Y, Ojika M, Inouye S (2004) Identification of the biosynthetic units of Cypridina luciferin in Cypridina (Vargula) hilgendorfii by LC/ESI-TOF-MS. Tetrahedron 60:11427–11434Google Scholar
  135. 135.
    Kato S, Oba Y, Ojika M, Inouye S (2006) Stereoselective incorporation of isoleucine into Cypridina luciferin in Cypridina hilgendorfii (Vargula hilgendorfii). Biosci Biotechnol Biochem 70:1528–1532Google Scholar
  136. 136.
    Kato S, Oba Y, Ojika M, Inouye S (2007) Biosynthesis of Cypridina luciferin in Cypridina noctiluca. Heterocycles 72:673–676Google Scholar
  137. 137.
    Goto T, Fukatsu H (1969) Cypridina bioluminescence VII. Chemiluminescence in micelle solutions: a model system for Cypridina bioluminescence. Tetrahedron Lett 10:4299–4302Google Scholar
  138. 138.
    Beebe W (1937) Preliminary list of Bermuda deep-sea fish. Based on the collections from fifteen hundred metre-net hauls, made in an eight-mile circle South and Nonsuch Island. Bermuda. Zoologica NY 22:197–208Google Scholar
  139. 139.
    Dunlap PV, Urbanczyk H (2013) Luminous bacteria. In: Rosenberg E (ed) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 495–528Google Scholar
  140. 140.
    Herring PJ (2002) Marine microlights: the luminous marine bacteria. Microbiol Today 29:174–176Google Scholar
  141. 141.
    Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T, Endo H (2007) Phylogenetic analysis of host-symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23:507–532Google Scholar
  142. 142.
    Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829Google Scholar
  143. 143.
    Meyer-Rochow VB (1976) Loss of bioluminescence in Anomalops katoptron due to starvation. Experientia 32:1175–1176Google Scholar
  144. 144.
    Haddock SHD, Case JF (1994) A bioluminescent chaetognath. Nature 367:225–226Google Scholar
  145. 145.
    Campbell AK, Herring PJ (1990) Imidazolopyrazine bioluminescence in copepods and other marine organisms. Mar Biol 104:219–225Google Scholar
  146. 146.
    Miya M, Nemoto T (1986) Reproduction, growth and vertical distribution of the mesopelagic fish Cyclothone pseudopallida (family Gonostomatidae). In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Proceedings of the second international conference on the Indo-Pacific fishes. The Ichthyological Society of Japan, Tokyo, pp 830–837Google Scholar
  147. 147.
    Mallefet J, Shimomura O (1995) Presence of coelenterazine in mesopelagic fishes from the Strait of Messina. Mar Biol 124:381–385Google Scholar
  148. 148.
    Frank TM, Widder EA, Latz MI, Case JF (1984) Dietary maintenance of bioluminescence in a deep-sea mysid. J Exp Biol 109:385–389Google Scholar
  149. 149.
    Haddock SHD, Rivers TJ, Robison BH (2001) Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci USA 98:11148–11151Google Scholar
  150. 150.
    Thomson CM, Herring PJ, Campbell AK (1995) Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis. J Mar Biol Ass UK 75:165–171Google Scholar
  151. 151.
    Buskey EJ, Stearns DE (1991) The effects of starvation on bioluminescence potential and egg release of the copepod Metridia longa. J Plankton Res 13:885–893Google Scholar
  152. 152.
    Oba Y, Kato S, Ojika M, Inouye S (2009) Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochem Biophys Res Commun 390:684–688Google Scholar
  153. 153.
    Mauchline J (1998) The biology of calanoid copepods: advances in marine biology, vol 33. Academic Press, San DiegoGoogle Scholar
  154. 154.
    Padmavati G, Ikeda T, Yamaguchi A (2004) Life cycle, population structure and vertical distribution of Metridia spp. (Copepoda: Calanoida) in the Oyashio region (NW Pacific Ocean). Mar Ecol Prog Ser 270:181–198Google Scholar
  155. 155.
    Anderson OR (1980) Radiolaria. Springer, New YorkGoogle Scholar
  156. 156.
    Meyer-Rochow VB (1986) Luminescent Copepoda of the genus Metridia with special reference to the Antarctic Metridia gerlachei. New Zld Antarc Rec 7:1–8Google Scholar
  157. 157.
    Hirakawa K, Imamura A (1993) Seasonal abundance and life history of Metridia pacifica (Copepoda: Calanoida) in Toyama Bay, Southern Japan Sea. Bull Plankton Soc Japan 40:41–54Google Scholar
  158. 158.
    Hayashi S, Hirakawa K (1997) Diet composition of the firefly squid, Watasenia scintillans, from Toyama Bay, Southern Japan Sea. Bull Japan Sea Natl Fish Res Inst 47:57–66 (in Japanese with English title and abstract)Google Scholar
  159. 159.
    Campbell AK (2012) Darwin shines light on the evolution of bioluminescence. Luminescence 27:447–449Google Scholar
  160. 160.
    Johnsen S, Franck TM, Haddock SHD, Widder EA, Messing CG (2012) Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands. J Exp Biol 215:3335–3343Google Scholar
  161. 161.
    Ross DM (1959) The sea anemone (Calliactis parasitica) and the hermit crab (Eupagurus bernhardus). Nature 4693:1161–1162Google Scholar
  162. 162.
    Okamura O (1970) Studies on the macrouroid fishes of Japan: morphology, ecology and phylogeny. Rept Usa Mar Biol Station 17:1–179 + 5 pltGoogle Scholar
  163. 163.
    Kanda S (1935) Fireflies (Hotaru), Nippon Hakko Seibutsu Kenkyu Kai, Tokyo (in Japanese) (reprinted edition, 1981, Scientist Inc, Tokyo)Google Scholar
  164. 164.
    Burkenroad MD (1943) A possible function of bioluminescence. J Mar Res 2:161–164Google Scholar
  165. 165.
    Meyer-Rochow VB (2007) Glowworms: a review of Arachnocampa spp. and kin. Luminescence 22:251–265Google Scholar
  166. 166.
    Buck J (1988) Synchronous rhythmic flashing of fireflies. Part II. Q Rev Biol 63:265–289Google Scholar
  167. 167.
    Ohba N (1999) Synchronous flashing of the firefly, Pteroptyx effulgens, in Papua New Guinea. Sci Rept Yokosuka City Mus 46:33–40 (in Japanese with English title and abstract)Google Scholar
  168. 168.
    Anctil M, Case JF (1977) The caudal luminous organs of lanternfishes: general innervation and ultrastructure. Am J Anat 149:1–22Google Scholar
  169. 169.
    Widder EA (1998) A predatory use of counter illumination by the squaloid shark, Isistius brasiliensis. Env Biol Fish 53:267–273Google Scholar
  170. 170.
    Abrahams MV, Townsend LD (1993) Bioluminescence in dinoflagellates: a test of the burglar alarm hypothesis. Ecology 74:258–260Google Scholar
  171. 171.
    Oliveira AG, Stevani CV (2009) The enzymatic nature of fungal bioluminescence. Photochem Photobiol Sci 8:1416–1421Google Scholar
  172. 172.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321Google Scholar
  173. 173.
    Branham MA (2010) Lampyridae Latreille, 1817. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 141–149Google Scholar
  174. 174.
    Kawashima I, Lawrence JF, Branham MA (2010) Rhagophthalmidae Olivier, 1907. In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology, vol IV, Arthropoda: Insecta, Teilband 39, Coleoptera, Beetles, vol 2., Morphology and systematics. Walter de Gruyter, Berlin, pp 135–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations