Skip to main content

Photoswitchable Ion Channels and Receptors

  • Conference paper
  • First Online:
Novel Approaches for Single Molecule Activation and Detection

Abstract

The development of photochromic and photoswitchable ligands for ion channels and receptors has made important contributions to optopharmacology and optogenetic pharmacology. These compounds provide new tools to study ion channel proteins and to understand their function and pathological implications. Here, we describe the design, operation, and applications of the available photoswitches, with special emphasis on ligand- and voltage-gated channels.

Antoni Bautista-Barrufet and Mercè Izquierdo-Serra contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP, Chun M, Church GM, Deisseroth K, Donoghue JP, Greenspan RJ, McEuen PL, Roukes ML, Sejnowski TJ, Weiss PS, Yuste R (2013) Neuroscience. The brain activity map. Science 339:1284–1285

    Article  ADS  Google Scholar 

  2. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322:395–399

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    Article  Google Scholar 

  4. Gorostiza P, Isacoff E (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol BioSyst 3:686–704

    Article  Google Scholar 

  5. Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16:816–823

    Article  Google Scholar 

  6. Gorostiza P, Isacoff EY (2008) Nanoengineering ion channels for optical control. Physiology (Bethesda) 23:238–247

    Article  Google Scholar 

  7. Szobota S, Isacoff EY (2010) Optical control of neuronal activity. Annu Rev Biophys 39:329–348

    Article  Google Scholar 

  8. Szobota S, McKenzie C, Janovjak H (2013) Optical control of ligand-gated ion channels. Methods Mol Biol 998:417–435

    Article  Google Scholar 

  9. Mourot A, Fehrentz T, Kramer RH (2013) Photochromic potassium channel blockers: design and electrophysiological characterization. Methods Mol Biol 995:89–105

    Article  Google Scholar 

  10. Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32:529–534

    Article  Google Scholar 

  11. Ortells MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18:121–127

    Article  Google Scholar 

  12. Hilf RJ, Dutzler R (2009) A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr Opin Struct Biol 19:418–424

    Article  Google Scholar 

  13. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  ADS  Google Scholar 

  14. Changeux JP, Edelstein SJ (1998) Allosteric receptors after 30 years. Neuron 21:959–980

    Article  Google Scholar 

  15. Yip GM, Chen ZW, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9:715–720

    Article  Google Scholar 

  16. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  17. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci USA 68:1820–1823

    Article  ADS  Google Scholar 

  18. Silman I, Karlin A (1969) Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science 164:1420–1421

    Article  ADS  Google Scholar 

  19. Chabala LD, Lester HA (1986) Activation of acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs. J Physiol 379:83–108

    Google Scholar 

  20. Lester HA, Chang HW (1977) Response of acetylcholine receptors to rapid photochemically produced increases in agonist concentration. Nature 266:373–374

    Article  ADS  Google Scholar 

  21. Barrantes FJ (1980) Modulation of acethylcholine receptor states by thiol modification. Biochemistry 19:2957–2965

    Google Scholar 

  22. Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B, Kramer RH, Trauner D (2012) Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat Chem 4:105–111

    Article  Google Scholar 

  23. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  ADS  Google Scholar 

  24. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  ADS  Google Scholar 

  25. Kasparov S, Herlitze S (2013) Optogenetics at a crossroads? Exp Physiol 98:971–972

    Article  Google Scholar 

  26. Raster P, Späth A, Bultakova S, Gorostiza P, König B, Bregestovski P (2013) New GABA amides activating GABAA receptors. Beilstein J Org Chem 9:406–410

    Article  Google Scholar 

  27. Stein M, Middendorp SJ, Carta V, Pejo E, Raines DE, Forman SA, Sigel E, Trauner D (2012) Azo-propofols: photochromic potentiators of GABAA receptors. Angew Chem Int Ed Engl 51:10500–10504

    Article  Google Scholar 

  28. Yue L, Pawlowski M, Dellal SS, Xie A, Feng F, Otis TS, Bruzik KS, Qian H, Pepperberg DR (2012) Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue. Nat Commun 3:1095

    Article  ADS  Google Scholar 

  29. Stein M, Breit A, Fehrentz T, Gudermann T, Trauner D (2013) Optical control of TRPV1 channels. Angew Chem Int Ed Engl 52:9845–9848

    Article  Google Scholar 

  30. Gereau RW, Swanson GT (2008) The glutamate receptors. Humana Press, New York

    Book  Google Scholar 

  31. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  Google Scholar 

  32. Felder CB, Graul RC, Lee AY, Merkle HP, Sadee W (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1:E2

    Article  Google Scholar 

  33. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756

    Article  ADS  Google Scholar 

  34. Doumazane E, Scholler P, Fabre L, Zwier JM, Trinquet E, Pin JP, Rondard P (2013) Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci USA 110:1416–1425

    Article  ADS  Google Scholar 

  35. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2:47–52

    Google Scholar 

  36. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci USA 104:10865–10870

    Google Scholar 

  37. Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135:17683–17686

    Article  Google Scholar 

  38. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D (2007) Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 129:260–261

    Article  Google Scholar 

  39. Numano R, Szobota S, Lau AY, Gorostiza P, Volgraf M, Roux B, Trauner D, Isacoff EY (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci USA 106:6814–6819

    Article  ADS  Google Scholar 

  40. Reiter A, Skerra A, Trauner D, Schiefner A (2013) A photoswitchable neurotransmitter analogue bound to its receptor. Biochemistry 52:8972–8974

    Article  Google Scholar 

  41. Stawski P, Sumser M, Trauner D (2012) A photochromic agonist of AMPA receptors. Angew Chem Int Ed Engl 51:5748–5751

    Article  Google Scholar 

  42. Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY (2010) A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13:1027–1032

    Article  Google Scholar 

  43. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16:507–516

    Article  Google Scholar 

  44. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545

    Google Scholar 

  45. Wyart C, del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461:407–410

    Article  ADS  Google Scholar 

  46. Li D, Herault K, Isacoff EY, Oheim M, Ropert N (2012) Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J Physiol 590:855–873

    Google Scholar 

  47. Izquierdo-Serra M, Trauner D, Llobet A, Gorostiza P (2013) Optical control of calcium-regulated exocytosis. Biochim Et Biophys Acta-Gen Subj 1830:2853–2860

    Article  Google Scholar 

  48. Izquierdo-Serra M, Trauner D, Llobet A, Gorostiza P (2013) Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci 6:1–8

    Google Scholar 

  49. Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, Kramer R, Dan Y, Isacoff EY, Flannery JG (2011) LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 19:1212–1219

    Article  Google Scholar 

  50. Izquierdo-Serra M, Gascón-Moya M, Hirtz JJ, Pittolo S, Poskanzer KE, Ferrer E, Alibés E, Busqué F, Yuste R, Hernando J, Gorostiza P (2014) Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J Am Chem Soc (Accepted Manuscript)

    Google Scholar 

  51. Abrams ZR, Warrier A, Wang Y, Trauner D, Zhang X (2012) Tunable oscillations in the Purkinje neuron. Phys Rev E: Stat Nonlin Soft Matter Phys 85:041905

    Article  ADS  Google Scholar 

  52. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  ADS  Google Scholar 

  53. Conley EC (1996) The ion channel facts book I: extracellular ligand-gated ion channels. Academic Press Limited, London

    Google Scholar 

  54. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519

    Google Scholar 

  55. Lima SQ, Miesenböck G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152

    Article  Google Scholar 

  56. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA 100:1352–1357

    Article  ADS  Google Scholar 

  57. Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically ChARGed neurons. Neuron 33:15–22

    Article  Google Scholar 

  58. Browne LE, Nunes JP, Sim JA, Chudasama V, Bragg L, Caddick S, Alan North R (2014) Optical control of trimeric P2X receptors and acid-sensing ion channels. Proc Natl Acad Sci USA 111:521–526

    Article  ADS  Google Scholar 

  59. Lemoine D, Habermacher C, Martz A, Méry PF, Bouquier N, Diverchy F, Taly A, Rassendren F, Specht A, Grutter T (2013) Optical control of an ion channel gate. Proc Natl Acad Sci USA 110:20813–20818

    Article  ADS  Google Scholar 

  60. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7:1381–1386

    Article  Google Scholar 

  61. Chambers JJ, Banghart MR, Trauner D, Kramer RH (2006) Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch. J Neurophysiol 96:2792–2796

    Article  Google Scholar 

  62. Fortin DL, Dunn TW, Fedorchak A, Allen D, Montpetit R, Banghart MR, Trauner D, Adelman JP, Kramer RH (2011) Optogenetic photochemical control of designer K+ channels in mammalian neurons. J Neurophysiol 106:488–496

    Article  Google Scholar 

  63. Fortin DL, Banghart MR, Dunn TW, Borges K, Wagenaar DA, Gaudry Q, Karakossian MH, Otis TS, Kristan WB, Trauner D, Kramer RH (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5:331–338

    Google Scholar 

  64. Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009) Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl 48:9097–9101

    Article  Google Scholar 

  65. Mourot A, Fehrentz T, le Feuvre Y, Smith CM, Herold C, Dalkara D, Nagy F, Trauner D, Kramer RH (2012) Rapid optical control of nociception with an ion-channel photoswitch. Nat Methods 9:396–402

    Article  Google Scholar 

  66. Mourot A, Kienzler MA, Banghart MR, Fehrentz T, Huber FM, Stein M, Kramer RH, Trauner D (2011) Tuning photochromic ion channel blockers. ACS Chem Neurosci 2:536–543

    Article  Google Scholar 

  67. Fehrentz T, Kuttruff CA, Huber FM, Kienzler MA, Mayer P, Trauner D (2012) Exploring the pharmacology and action spectra of photochromic open-channel blockers. Chem Bio Chem 13:1746–1749

    Article  Google Scholar 

  68. Polosukhina A, Litt J, Tochitsky I, Nemargut J, Sychev Y, de Kouchkovsky I, Huang T, Borges K, Trauner D, van Gelder RN, Kramer RH (2012) Photochemical restoration of visual responses in blind mice. Neuron 75:271–282

    Article  Google Scholar 

  69. Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling. Neuron 74:1005–1014

    Article  Google Scholar 

  70. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  Google Scholar 

  71. Papagiakoumou E, Begue A, Leshem B, Schwartz O, Stell BM, Bradley J, Oron D, Emiliani V (2013) Functional patterned multiphoton excitation deep inside scattering tissue. Nat Photon 7:274–278

    Article  ADS  Google Scholar 

  72. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  ADS  Google Scholar 

  73. Oron D, Papagiakoumou E, Anselmi F, Emiliani V (2012) Two-photon optogenetics. Prog Brain Res 196:119–143

    Article  Google Scholar 

  74. Watson BO, Nikolenko V, Yuste R (2009) Two-photon imaging with diffractive optical elements. Front Neural Circ 3:6

    Google Scholar 

  75. Szymanski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL (2013) Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev 113:6114–6178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Gorostiza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bautista-Barrufet, A., Izquierdo-Serra, M., Gorostiza, P. (2014). Photoswitchable Ion Channels and Receptors. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_9

Download citation

Publish with us

Policies and ethics