Advertisement

Untersuchungen zur Synchronisation in vivo: Temporäre Inhibition der DNA-Synthese durch Hydroxyharnstoff in normalen und malignen Säugerzellsystemen

  • M. F. Rajewsky
  • D. F. Hülser
  • E. Fabricius

Zusammenfassung

Die Bearbeitung einer Reihe von Problemstellungen der experimentellen und klinischen Krebsforschung setzt die Möglichkeit einer Synchronisation proliferierender Zellsysteme in vivo voraus. Dies gilt z. B. für die Frage, ob bei Säugerzellen als Funktion ihrer Position im Zellcyclus Empfindlichkeitsunterschiede vorhanden sind, und zwar sowohl hinsichtlich der Auslösbarkeit des Prozesses der malignen Transformation durch Cancerogene, als auch in bezug auf die Inaktivierbarkeit maligner Zellen durch cytocide Agentien oder ionisierende Strahlung.

In der vorliegenden Arbeit wird über Untersuchungen zur in vivo-Synchronisation verschiedener Gewebe (Embryo; Leber; Milz; transplantabler BICR/M1R-Tumor) der Ratte durch temporäre Blockade der DNA-Synthese mit Hydroxyharnstoff (HU) berichtet. HU inhibiert die DNA-Synthese in vivo spezifisch, rasch und nahezu vollständig. Das rasche Absinken der HU-Konzentration im Organismus unter den zur Hemmung der DNA-Synthese erforderlichen Schwellenwert gestattet eine hinreichend verzögerungsfreie Beendigung von DNA-Syntheseblocks, wie sie für eine effektive Synchronisation erforderlich ist. Nach ein- oder mehrmaliger Pulsapplikation von HU sind die Halbwertszeiten (t1/2) für die HU-Konzentration in BICR/M1R-Tumorgewebe und Blut annähernd gleich. Die t1/2-Werte im Blut von Maus (13 min), Ratte und Mensch verhalten sich wie etwa 1:2:8. In den gemessenen Zeltsystemen der Ratte erfolgte die Aufhebung der DNA-Syntheseblocks bei Unterschreiten einer HU-Konzentration von 1−5 × 10−5 Mol/103 g (Ausnahme: Rattenembryo, ~ 2 × 10−4 Mol/103 g). Die Inhibitorwirkung einer bestimmten, im Blut gemessenen HU-Konzentration kann mit Hilfe des 3H-Thymidineinbaus durch Inkubation entsprechender Blutplasmaproben mit Referenzzellen in vitro bestimmt werden. Cytotoxische Effekte von HU, die wahrscheinlich vorwiegend auf blockierte S-Zellen beschränkt sind, waren besonders deutlich bei Zellen vom lymphatischen Typ. Als Modellsystem für die Analyse der Proliferationskinetik nach ein- und mehrmaligen DNA-Syntheseblocks von verschiedener Dauer diente der BICR/M1R-Tumor. Die Ergebnisse zeigen, daß durch Anwendung eines Inhibitors der DNA-Synthese vom Typ des HU unter kontrollierten Bedingungen eine partielle Synchronisation proliferierender Zellen in vivo erreicht werden kann.

Abkürzungen und Definitionen

HU

Hydroxyharnstoff

PCA

Perchlorsäure

tC

mittlere (mediane) Zellcyclusdauer

tG1

mittlere Dauer der G1-Periode des Zellcyclus

tS

mittlere Dauer der S-Periode des Zellcyclus

tG2

mittlere Dauer der G2-Periode des Zellcyclus

tM

mittlere Dauer der Mitose

n

Gesamtzahl der Zellen einer Zellpopulation

np

Anzahl der proliferierenden Zellen einer Zellpopulation

np/n

Proliferative Fraktion einer Zellpopulation

nS

Anzahl der in der S-Periode des Zellcyclus befindlichen Zellen einer Zellpopulation (S-Zellen)

nS*

Anzahl der 3H-Thymidin einbauenden S-Zellen einer Zellpopulation

nS*/n

3H-Thymidin-Markierungsindex

nM

Anzahl der in Mitose befindlichen Zellen einer Zellpopulation

nMM*

Anzahl der in der Mitose befindlichen, 3H-Thymidin-markierten Zellen einer Zellpopulation

Anzahl der in Mitose befindlichen, nicht 3H-Thymidin-markierten Zellen einer Zellpopulation

nM/n

Mitoseindex

nM*/nM

Anteil 3H-Thymidin-markierter Zellen in Mitose an der Gesamtzahl der Zellen in Mitose.

Studies on Synchronisation in vivo: Temporary Inhibition of DNA Synthesis in Normal and Malignant Mammalian Cell Systems with Hydroxyurea

Summary

The synchronous passage of proliferating cells through defined phases of the cell cycle is a prerequisite for the study of a number of problems associated with carcinogenesis and cancer therapy. It is particularly required for investigations of the differential sensitivity of mammalian cells in specific phases of the cell cycle to agents capable of initiating the process of malignant transformation, or causing cell death.

The present study is concerned with the in vivo synchronisation of different rat tissues (embryo; liver; spleen; transplantable BICR/M1R tumor) by temporary specific inhibition of DNA synthesis with hydroxyurea (HU). In the cell systems investigated, HU inhibited DNA synthesis rapidly and almost completely. On the other hand, the short half-life (t1/2) of the inhibitor in the organism permitted a termination of blocking periods without delay, as required for effective synchronisation. Following single or multiple doses of HU, the t1/2 values for the HU concentration in BICR/M1R tumor tissue and rat blood were nearly identical. t1/2 in rat and human blood exceeded the corresponding value for the mouse (13 min) by factors of about 2 and 8, respectively. In the rat cell systems investigated, DNA synthesis resumed when the HU concentration decreased below a level of 1−5 × 10−5 moles/103 g (exception: rat embryo; ~ 2 × 104 moles/103 g). The inhibitory effect of a specific blood concentration of HU on cellular DNA synthesis after in vivo administration of the inhibitor can be measured by the reduction of 3H-thymidine incorporation in reference cells exposed to the respective blood plasma samples in vitro. Cytotoxic effects of HU, which are often confined to cells blocked in S, were particularly evident in cells of the lymphatic type. The BICR/M1R tumor served as a model cell system for the analysis of the kinetics of cell proliferation after single and multiple blocks of varying duration. The results show that partial synchronisation of proliferating cells in vivo can be obtained by temporary inhibition of DNA synthesis under controlled conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams, R.L.P., Lindsay, J.G.: Hydroxyurea-reversal of inhibition and use as a cell-synchronizing agent. J. Biol. Chem., 242, 1314 (1967).PubMedGoogle Scholar
  2. Adamson, R.H., Ague, S. L., Hess, S.M., Davidson, J. D.: (1) The distribution, excretion and metabolism of hydroxyurea’40. J. Pharmacol. Esptl. Therap., 150, 322 (1965).Google Scholar
  3. Adamson, R.H., Yancey, S. T., Ben, M., Loo, T. L., Rall, D. P.: (2) Some aspects of the antitumor activity and pharmacology of hydroxyurea. Arch. Intern. Pharmacodyn. 153, 87 (1965).Google Scholar
  4. Ariel, I.M.: Therapeutic effects of hydroxyurea. Cancer, 25, 705 (1970).PubMedCrossRefGoogle Scholar
  5. Barrett, J.C.: A mathematical model of the mitotic cycle and its application to the interpretation of percentage labeled mitoses data. J. Natl. Cancer Inst. 37, 443 (1966). Bergmann, F., Segal, R.: The separation and determination of microquantities of lower aliphatic acids, including fluoroacetic acids. Biochem. J. 62, 542 (1956).Google Scholar
  6. Bohne, F., Haas, R.J., Fliedner, T. M., Fache, I.: The role of slowly proliferating cells in rat bone marrow during regeneration following hydroxyurea. Brit. J. Haematol. 19, 533 (1970).CrossRefGoogle Scholar
  7. Bresciani, F.: A comparison of the cell generative cycle in normal, hyperplastic and neoplastic mammary gland of the C3H mouse. In: Cellular radiation biology. 18th Annual Symposium on Fundamental Cancer Research, p. 547. The University of Texas M.D. Anderson Hospital and Tumor Institute. Baltimore: The Williams and Wilkins Company (1965).Google Scholar
  8. Bucher, N. L. R.: Regeneration of mammalian liver. Intern. Rev. Cytol. 15, 245 (1963).CrossRefGoogle Scholar
  9. Bush, E. T.: General applicability of the channels ratio method of measuring liquid scintillationGoogle Scholar
  10. counting efficiencies. Analyt. Chem., 35, 1024 (1963).CrossRefGoogle Scholar
  11. Cikes, M.: Relationship between growth rate, cell volume, cell cycle kinetics, and antigenetic properties of cultured murine Lymphoma cells. J. Natl. Cancer Inst. 45, 979 (1970).PubMedGoogle Scholar
  12. Cleaver, J. E.: Thymidine metabolism and cell kinetics. North Holland Research Monograph, Frontiers of Biology, Vol. 6, Herausgegeben von A. Neuberger and E. L. Tatum. North Holland Publishing Co., Amsterdam (1967).Google Scholar
  13. Cole, M. B., Strauss, B.: Cell killing and the accumulation of breaks in the DNA of HEp-2 cells incubated in the presence of hydroxyurea. Cancer Res. 30, 2314 (1970).Google Scholar
  14. Colvin, M., Bono, Jr., V. H.: The enzymatic reduction of hydroxyurea to urea by mouse liver. Cancer Res. 30, 1516 (1970).PubMedGoogle Scholar
  15. Dresler, W.F.C., Stein, R.: Über den Hydroxylharnstoff. Ann. Chim. 150, 242 (1869).Google Scholar
  16. Druckrey, H.: Genotypes and phenotypes of ten inbred strains of BD-rats. Arzneimittel-Forsch. 21, 1274 (1971).Google Scholar
  17. Druckrey, H., Preussmann, R., Ivankovic, S., Schmähl, D.: Organotrope carcinogene Wirkung bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z. Krebsforsch. 69, 103 (1967).PubMedCrossRefGoogle Scholar
  18. Eidinoff, M.L., Rich, M.A. Growth inhibition of a human tumor cell strain by 5-fluoro-2’-deoxyuridine: Time parameters for subsequent reversal by thymidine. Cancer Res. 19, 521 (1959).Google Scholar
  19. Fabricius, E., Rajewsky, M. F.: Determination of hydroxyurea in mammalian tissues and blood. Europ. J. Clin. Biol. Res. 16, 679 (1971).Google Scholar
  20. Farber, E., Baserga, R.: Differential effects of hydroxyurea on survival of proliferating cells. Cancer Res. 29, 136 (1969).PubMedGoogle Scholar
  21. Gale, G. R.: Antagonism by deoxyribosides of the inhibitory action of certain hydroxamic acids on deoxyribonucleic acid synthesis. Experientia 24, 57 (1968).PubMedCrossRefGoogle Scholar
  22. Gillette, E. L., Withers, H.R., Tannock, I. F.: The age sensitivity of epithelial cells of mouse small intestine. Radiology 96, 639 (1970).PubMedGoogle Scholar
  23. Higgins, G.M., Anderson, R.M.: Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Path. 12, 186 (1931).Google Scholar
  24. Jacobs, S.J.: Studies on the mode of action of hydroxyurea. Ph. D. Dissertation, Columbia University (1968).Google Scholar
  25. Kalberer, F., Rutschmann, J.: Eine Schnellmethode zur Bestimmung von Tritium, Radiokohlenstoff and Radioschwefel in beliebigem organischem Probenmaterial mittels des Flüssigkeits-Szintillationszählers. Hely. Chim. Acta 242, 1957 (1961).Google Scholar
  26. Kim, J. H., Gelbard, A.S., Perez, A. G.: Action of hydroxyurea on the nucleic acid metabolism and viability of HeLa cells. Cancer Res. 27, 1301 (1967).PubMedGoogle Scholar
  27. Kim, J. H., Perez, A.G., Djordjevic, B.: Studies on unbalanced growth in synchronized HeLa cells. Cancer Res. 28, 2443 (1968).PubMedGoogle Scholar
  28. Krakoff, I. H., Brown, N. C., Reichard, P.: Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res. 28, 1559 (1968).PubMedGoogle Scholar
  29. Madoc-Jones, H., Mauro, F.: Age-responses to X-rays, vinca alkaloids and hydroxyurea of marine lymphoma cells synchronized in vivo. J. Natl. Cancer Inst. 45, 1131–1143 (1970).PubMedGoogle Scholar
  30. Mauro, F., Madoc-Jones, H.: Age response to X-radiation of murine lymphoma cells synchronized in vivo. Proc. Natl. Acad. Sci (US) 63, 686 (1969).CrossRefGoogle Scholar
  31. Mauro, F., Madoc-Jones, H.: Age responses of cultured mammalian cells to cytotoxic drugs. Cancer Res. 30, 1397 (1970).PubMedGoogle Scholar
  32. Mueller, G.C.: Biochemical events in the animal cell cycle. Federat. Proc. 28, 1780 (1969).Google Scholar
  33. Nery, R.: The colorimetric determination of hydroxamic acids. Analyst 91, 388 (1966).CrossRefGoogle Scholar
  34. Pfeiffer, S.E., Tolmach, L J.: Inhibition of DNA synthesis in HeLa cells by hydroxyurea. Cancer Res. 27, 124 (1967).PubMedGoogle Scholar
  35. Philips, F. S., Sternberg, S. S., Schwartz, H. S., Cronin, A. P., Sodergren, J. E., Vidal, P. M.: Hydroxyurea. I. Acute cell death in proliferating tissues in rats. Cancer Res. 27, 61 (1967).PubMedGoogle Scholar
  36. Pilgrim, C., Lennartz, K. J., Wegener, K., Hollweg, S., Maurer, W.: Autoradiographische Untersuchungen über tageszeitliche Schwankungen des H3-Index and des Mitose-Index bei Zellarten der ausgewachsenen Maus, des Ratten-Fetus sowie bei Aszites-Tumorzellen. Z. Zellforsch. 68, 138 (1965).PubMedCrossRefGoogle Scholar
  37. Pollak, R.D., Rosenkranz, H.S.: Metabolic effects of hydroxyurea on BHK 21 cells transformed with polyoma virus. Cancer Res. 27, 1214 (1967).PubMedGoogle Scholar
  38. Prescott, D.M.: Composition of the cell life cycle. In: Normal and malignant cell growth. Fry, R.J.F., Griem, M. L., Kirsten, W. H. (Eds.). Recent Res. in Cancer Res. 17. Springer-Verlag, Berlin-Heidelberg-New York, 79 (1969).Google Scholar
  39. Quastler, H., Sherman, F. G.: Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res. 17, 420 (1959).PubMedCrossRefGoogle Scholar
  40. Rajewsky, M.F.: Synchronisation in vivo: Kinetics of mammalian cell populations following blockage of DNA synthesis with hydroxyurea. Abstr., IInd Meeting Europ. study group for cell proliferation (ESGCP), Schloß Reisenburg, Germany (1968).Google Scholar
  41. (1).
    Rajewsky, M.F.: Synchronisation in vivo: Kinetics of a malignant cell system following temporary inhibition of DNA synthesis with hydroxyurea. Exptl. Cell Res. 60, 269 (1970).PubMedCrossRefGoogle Scholar
  42. (2).
    Rajewsky, M.F.: Temporal and metabolic aspects of tumor cell cycles. Proc. Xth Int. Cancer Congress, Houston (1970), Vol. I, p. 394. Year Book Med. Publ. Inc., Chicago.Google Scholar
  43. Rajewsky, M.F., Fabricius, E., Hülser, D. F.: Synchronisation in vivo: Temporary inhibition of DNA synthesis in the rat embryo with hydroxyurea. Exp. Cell Res. 66, 489 (1971).PubMedCrossRefGoogle Scholar
  44. Rajewsky, M.F., Grüneisen, A.: In Vorbereitung.Google Scholar
  45. Rosenkranz, H. S.: Some biological effects of carbamoyloxyurea, an oxidation product of hydroxyurea. J. Bacteriol. 102, 20 (1970).PubMedGoogle Scholar
  46. Rosenkranz, H. S., Carr, H.S.: Hydroxyurea and escherichia coli nucleoside diphosphate reductase. Cancer Res. 30, 1926 (1970).PubMedGoogle Scholar
  47. Rosenkranz, H. S., Jacobs, S. J.: Inhibition of DNA synthesis by hydroxyurea. Gann Monograph 6, 15 (1968).Google Scholar
  48. Rosenkranz, H. S., Jacobs, S. J., Carr, H.S.: Studies with hydroxyurea. VIII. The deoxyribonucleic acid of hydroxyurea-treated cells. Biochim. Biophys. Acta 161, 428 (1968).PubMedCrossRefGoogle Scholar
  49. Rosenkranz, H. S., Pollak, R. D., Schmidt, R.M.: Biologic effects of isohydroxyurea. Cancer Res. 29, 209 (1969). Rueckert, R.R., Mueller, G.C.: Studies on unbalanced growth in tissue culture. I. Induction and consequence of thymidine deficiency. Cancer Res. 20, 1584 (1960).Google Scholar
  50. Schwartz, H. S., Garofalo, M., Sternberg, S. S., Philips, F. S.: Hydroxyurea: Inhibition of deoxyribonucleic acid synthesis in regenerating liver of rats. Cancer Res. 25, 1867 (1965).PubMedGoogle Scholar
  51. Shipley, W U: Immune cytolysis in relation to growth cycle of Chinese Hamster cells. Cancer Res. 31, 925 (1971).PubMedGoogle Scholar
  52. Sinclair, W.K.: Hydroxyurea: Differential lethal effects on cultured mammalian cells during the cell cycle. Science 150, 1729 (1965).PubMedCrossRefGoogle Scholar
  53. Sinclair, W.K.: Cyclic X-ray responses in mammalian cells in vitro. Radiation Res. 33, 620 (1968).PubMedCrossRefGoogle Scholar
  54. Sinclair, W.K.: Methods and criteria of mammalian cell synchrony. In: Normal and malignant cell growth. Fry, R. J.M., Griem, M.L., Kirsten, W. H. (Eds.). Recent Results in Cancer Res. 17. Springer, Berlin-Heidelberg-New York, 90 (1969).Google Scholar
  55. Steel, G. G.: Unveröffentlichte Ergebnisse, persönliche Mitteilung (1969).Google Scholar
  56. Steel, G. G., Adams, K., Barrett, J. C.: Analysis of the cell population kinetics of transplanted tumors of widely-differing growth rate. Brit. J. Cancer 20, 784 (1966).PubMedCrossRefGoogle Scholar
  57. Steel, G. G., Hanes, S: The technique of labelled mitoses: Analysis by automatic curve fitting. Cell Tissue Kinet. 4, 93 (1971).PubMedGoogle Scholar
  58. Stubblefield, E.: Synchronisation methods for mammalian cell cultures. In: Methods in cell physiology, Vol. III (Ed.: D. M. Prescott ). Academic Press New York-London, p. 25 (1968).Google Scholar
  59. Süss, R., Maurer, H.R.: Reduced binding of carcinogenic hydrocarbons to DNA of mouse skin during inhibition of DNA synthesis. Nature 217, 752 (1968).PubMedCrossRefGoogle Scholar
  60. Till, J. E., Whitmore, G.F., Gulyas, S.: Deoxyribonucleic acid synthesis in individual L-strain mouse cells. II. Effects of thymidine starvation. Biochim. Biophys. Acta 72, 277 (1963).PubMedCrossRefGoogle Scholar
  61. Thurman, W. G., Bloedow, C., Howe, C. D., Lewin, W. C., Davis, P., Lane, M., Sullivan, M. P., Griffith, K. M. A.: Phase I: Study of hydroxyurea. Cancer Chemotherap. Rpt. 29, 103 (1963).Google Scholar
  62. Vesco, C., Penman, S.: Purified cytoplasmic DNA from HeLa cells: Resistance to inhibition by hydroxyurea. Biochem. Biophys. Res. Comm. 35, 249 (1969).PubMedCrossRefGoogle Scholar
  63. Yarbro, J.W.: Further studies on the mechanism of action of hydroxyurea. Cancer Res. 28, 1082 (1968).PubMedGoogle Scholar
  64. Young, C. W., Hodas, S.: Hydroxyurea: Tnhibitory effect on DNA metabolism. Science 146, 1172 (1964).PubMedCrossRefGoogle Scholar
  65. Young, C. W., Schochetman, G., Hodas, S., Balis, M.E.: (1) Inhibition of DNA synthesis by hydroxyurea: Structure-activity relationships. Cancer Res. 27, 535 (1967).PubMedGoogle Scholar
  66. Young, C. W., Schochetman, G., Karnofsky, D.: (2) Hydroxyurea-induced inhibition of deoxynucleotide synthesis: Studies in intact cells. Cancer Res. 27, 526 (1967).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • M. F. Rajewsky
    • 1
  • D. F. Hülser
    • 1
  • E. Fabricius
    • 1
  1. 1.Abteilung Physikalische BiologieMax-Planck-Institut für VirusforschungTübingenDeutschland

Personalised recommendations