Duality

  • John L. Kelley
  • Isaac Namioka
  • W. F. DonoghueJr.
  • Kenneth R. Lucas
  • B. J. Pettis
  • Ebbe Thue Poulsen
  • G. Baley Price
  • Wendy Robertson
  • W. R. Scott
  • Kennan T. Smith
Part of the Graduate Texts in Mathematics book series (GTM, volume 36)

Abstract

This chapter is devoted to the duality which is the central part of the theory of linear topological spaces. The pattern of investigation is simple: we seek to find, for each proposition about a linear topological space E, an equivalent proposition which is stated in terms of the adjoint space E*. Of course, it is necessary that E*, in some sense, describe E rather closely, and consequently our results, with minor exceptions, are for locally convex spaces.

Keywords

Weak Topology Convex Space Strong Topology Linear Topological Space Convex Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© J. L. Kelley and G. B. Price 1963

Authors and Affiliations

  • John L. Kelley
    • 1
  • Isaac Namioka
    • 2
  • W. F. DonoghueJr.
  • Kenneth R. Lucas
  • B. J. Pettis
  • Ebbe Thue Poulsen
  • G. Baley Price
  • Wendy Robertson
  • W. R. Scott
  • Kennan T. Smith
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations