Die Tschebyscheffschen Polynome erster Art T n (x) und zweiter Art U n (x) sind definiert durch


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Polya-Szegö: Bd. 2. Courant-Hilbert: Bd. 1.Google Scholar
  2. §2.
    Appell-Kampé de Fériet: S. 342-362.Google Scholar
  3. Doetsch: S. 184-186, 310.Google Scholar
  4. Feldheim, E.: J. London math. Soc. Bd. 13 (1938) S. 22–29.CrossRefMathSciNetGoogle Scholar
  5. §3.
    Appell-Kampé de Fériet: S. 99.Google Scholar
  6. §4.
    Bateman: S. 457.Google Scholar
  7. Doetsch: S. 136, 181-184, 310.Google Scholar
  8. Howell, W. T.: A Note on Laguerre Polynomials. Phil. Mag. (7) Bd. 23 (1937) S. 807–811.MATHGoogle Scholar
  9. On operational Representations of products of parabolic Cylinder functions and products of Laguerre polynomials. Ebd. Bd. 24 (1937) S. 1082-1093.Google Scholar
  10. Toscano, L.: Formula di addizione e moltiplicazione sui polinomi di Laguerre. Atti Accad. Sci. Torino Bd. 76 (1941) S. 417–432.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1943

Authors and Affiliations

  • Wilhelm Magnus
    • 1
  • Fritz Oberhettinger
    • 2
  1. 1.Technischen Hochschule BerlinDeutschland
  2. 2.BerlinDeutschland

Personalised recommendations