Polymer melt testing devices now commercially available are adequate for studies of the viscometric functions up to moderately high shear rates and the complex viscosity over a wide range of frequencies. However, these devices have characteristics which limit their effectiveness at large shear rates or amplitudes of oscillation. For example in the cone-plate system, material is thrown out of the gap at large rates of rotation or large amplitudes of oscillation. In the case of the capillary viscometer, pressure and temperature are highly nonuniform at large shear rates. This paper describes a rheometer design for measurement of the shear viscosity of melts at high shear rates and also the response to large amplitude oscillatory shear. But only applications to the study of oscillatory shear will be discussed in detail.




Cauchy-Green strain tensor


Finger strain tensor


gap spacing


thermal conductivity


difference between maximum and minimum temperatures in sheared fluid


second invariant of rate-of-strain tensor; Δ: Δ

Greek Letters


material constant of second-order fluid


material constant of second-order fluid


shear strain amplitude

\( \dot \gamma \)

shear rate in simple shear

\( \dot \gamma _0 \)

0 maximum shear rate; equal to y


rate-of-deformation tensor; grad velocity plus its transpose


material constant in eq. [8]




complex viscosity


dynamic viscosity


characteristic time of fluid μ material constant with units of viscosity


fluid density


viscous or extra stress tensor


frequency (radians/sec.)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Marsh, B. D., Trans. Soc. Rheol, 12, 489 (1968).CrossRefGoogle Scholar
  2. 2).
    Jen Chen, I. and D. C. Bogue, Trans. Soc. Rheol., 16, 59 (1972).CrossRefGoogle Scholar
  3. 3).
    Jones, T. E. and K. Walters, J. Phys. B, 4, 85 (1971).CrossRefGoogle Scholar
  4. 4).
    Dodge, J. S. and I. M. Krieger, Rheol Acta, 8, 480 (1969).CrossRefGoogle Scholar
  5. 5).
    Markovitz, H. and B. D. Coleman, Adv. Appl. Mech., 8, 69 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6).
    Markovitz, H. and B. D. Coleman, Phys. Fluids, 7, 833 (1964).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7).
    MacDonald, I. F., B. C. Marsh, and E. Ashore, Chem. Eng. Sci., 24, 1615 (1969).CrossRefGoogle Scholar
  8. 8).
    Highgate, D. J. and R. W. Whorlow, Rheol. Acta, 8, 142 (1969).CrossRefGoogle Scholar
  9. 9).
    Barton, T. H. and R. J. Ionides, IEEE Trans., PAS-85, 152 (1966).Google Scholar
  10. 10).
    Barton, T. H. and L. Solar, IEEE Trans., IGA-3, 310 (1967).Google Scholar
  11. 11).
    Philippoff, W., Trans. Soc. Rheol, 10, 317 (1966).CrossRefGoogle Scholar
  12. 12).
    Vinogradov, G. V., Y. G. Yanovsky, and A. I. Isaev, Int. Chem. Eng., 11, 309 (1971).Google Scholar
  13. 13).
    Vinogradov, G. V., Y. G. Yanovsky, and A. I. Isaev, J. Polym. Sci, A-2, 8, 1239 (1970).CrossRefGoogle Scholar
  14. 14).
    Vinogradov, G. V., Y. G. Yanovsky, A. I. Isaev, V. P. Shatalov, and V. G. Shalgonova, Int. J. Polym. Mater, 1,17 (1971).CrossRefGoogle Scholar
  15. 15).
    Yanas, I. V. and V. C. Haskell, J. Appl Phys., 42, 610 (1971).ADSCrossRefGoogle Scholar
  16. 16).
    Yanas, I. V., N. H. Sung, and A. C. Lunn, J. Macro-mol. Sci, Phys, 5, 487 (1971).CrossRefGoogle Scholar
  17. 17).
    Yanas, I. V. and A. C. Lunn, J. Macromol. Sci, Phys, 4, 603 (1970).CrossRefGoogle Scholar
  18. 18).
    Lai, J. S. Y. and W. N. Findley, Polym. Eng. Sci., 9, 378 (1969).CrossRefGoogle Scholar
  19. 19).
    Onogi, S., T. Masuda, and T. Matsumoto, Trans. Soc. Rheol, 14, 275 (1970).CrossRefGoogle Scholar
  20. 20).
    Bird, R. B. and P. J. Carreau, Chem. Eng. Sci, 23, 427 (1968).CrossRefGoogle Scholar
  21. 21).
    Tanner, R. I. and J. M. Simmons, Chem. Eng. Sci, 22, 1803 (1967).CrossRefGoogle Scholar
  22. 22).
    Tanner, R. I., Trans. Soc. Rheol, 12, 155 (1968).CrossRefGoogle Scholar
  23. 23).
    Carreau, P. J., Ph. D. Dissertation, Univ. of Wisconsin, 1968.Google Scholar
  24. 24).
    Carreau, P. J., Trans. Soc. Rheol., 16, 99 (1972).CrossRefGoogle Scholar
  25. 25).
    Ibrahim, O. E., Rheol. Acta, 8, 214 (1969).CrossRefGoogle Scholar
  26. 26).
    Watson, J. D., Rheol. Acta, 8, 201 (1969).CrossRefGoogle Scholar
  27. 27).
    Warburton, B. and S. S. Davis, Rheol. Acta, 8, 205 (1969).CrossRefGoogle Scholar
  28. 28).
    Green, A. E. and R. S. Rivlin, Arch. Rat. Mech. Anal, 1, 1 (1957).CrossRefzbMATHMathSciNetGoogle Scholar
  29. Green, A. E. and R. S. Rivlin, Arch. Rat. Mech. Anal 3, 82 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  30. Green, A. E. and R. S. Rivlin, Arch. Rat. Mech. Anal 4, 387 (1960).CrossRefzbMATHMathSciNetGoogle Scholar
  31. 29).
    Dodge, J. S. and I. M. Krieger, Trans. Soc. Rheol., 15, 589 (1971).CrossRefGoogle Scholar
  32. 30).
    Walters, K. and T. E. R. Jones, Proc. 5th Int. Cong. Rheol., 4, 337 (Baltimore 1970).Google Scholar
  33. 31).
    Davis, S. S., J. Pharmac. Sci, 60, 1356 (1971).CrossRefGoogle Scholar
  34. 32).
    Payne, A. R. and R. E. Whittaker, Rheol. Acta, 9, 91 (1970).CrossRefGoogle Scholar
  35. 33).
    Krizek, R. J., Trans. Soc. Rheol., 15, 433 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. M. Dealy
    • 1
  • T. T. Tee
    • 1
  • J. F. Petersen
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Veba-Chemie AGGelsenkirchen-BuerGermany

Personalised recommendations