The creep behavior of ideally atactic and commercial polymethylmethacrylate

  • D. J. Plazek
  • V. Tan
  • V. M. O’Rourke


It is perhaps surprising that the study of the time dependence of the mechanical behavior of such a common commercial polymer as polymethylmethacrylate, PMMA, at temperatures above its glass temperature, T g , has been quite limited (1–4). Many investigations, too numerous to cite here, have been carried out on its mechanical behavior and other physical properties, mostly below its T g . The general features of its stress relaxation behavior, including the great sensitivity of the rate of relaxation on the presence of absorbed moisture, have been described by McLoughlin and Tobolsky. It is not widely appreciated that the effect of absorbed water is present in most if not all polymers. The shift to shorter times or higher frequencies, of course, is far more significant in polar polymers. Scientific interest in the methacrylates of late has been spurred by the availability of samples with a wide range of stereochemical structures and the detailed knowledge of these structures afforded by the nuclear magnetic resonance, NMR, technique. The strong dependence of their T g ’s on tacticity added immensely to their overall interest.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    McLoughlin, J. R. and A. V. Tobolsky, J. Colloid Sci. 7, 555 (1952).CrossRefGoogle Scholar
  2. 2).
    Bueche, F., J. Appl. Phys. 26, 738 (1955).ADSCrossRefGoogle Scholar
  3. 3).
    Iwayanagi, S., J. Sci. Research Inst. (Japan) 49, 4 (1955).Google Scholar
  4. 4).
    Coulehan, R. E., private communication.Google Scholar
  5. 5).
    Technical Documentary Report No. ML-TDR-64-286, Part III (1966), Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433.Google Scholar
  6. 6).
    Berry, G. C. and T. G. Fox, Fortschr. Hochpolym. Forschg. 5, 261 (1968).CrossRefGoogle Scholar
  7. 7).
    Coleman, B. D. and T. G. Fox, J. Polymer Sci. Part A 1, 3183 (1963).Google Scholar
  8. 8).
    Plazek, D. J., J. Polymer Sci. 6, 621 (1968).CrossRefGoogle Scholar
  9. 9).
    Andrade, E. N. da C., Proc. Roy. Soc. (London) A84, 1 (1910).ADSCrossRefGoogle Scholar
  10. Andrade, E. N. da C., Phil. Mag. 7, 2003 (1962).ADSCrossRefGoogle Scholar
  11. 10).
    Plazek, D. J., W. Dannhauser, and J. D. Ferry, J. Colloid Sci. 16, 101 (1961).CrossRefGoogle Scholar
  12. 11).
    Reid, D. R., Brit. Plastics (Oct. 1959).Google Scholar
  13. 12).
    Newlin, T. E., S. E. Lovell, P. R. Sounders, and J. D. Ferry, J. Colloid Sci. 17, 10 (1962).CrossRefGoogle Scholar
  14. 13).
    Berge, J. W., P. R. Sounders, and J. D. Ferry, J. Colloid Sci. 14, 135 (1959).CrossRefGoogle Scholar
  15. 14).
    Sounders, P. R., D. M. Stern, S. F. Kurath, C. Sakoonkim, and J. D. Ferry, J. Colloid Sci. 14, 222 (1959).CrossRefGoogle Scholar
  16. 15).
    Stern, D. M., J. W. Berge, S. F. Kurath, C. Sakoonkim, and J. D. Ferry, J. Colloid Sci. 17, 409 (1962).CrossRefGoogle Scholar
  17. 16).
    Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Ed. (New York 1970).Google Scholar
  18. 17).
    Plazek, D. J., J. Colloid Sci. 15, 50 (1960).CrossRefGoogle Scholar
  19. 18).
    Plazek, D. J. and V. M. O’Rourke, Presented at the Fifth International Congress on Rheology, Kyoto, Japan, Oct. 9 (1968).Google Scholar
  20. 19).
    Ninomiya, K. and J. D. Ferry, J. Phys. Chem. 67, 2292 (1963).CrossRefGoogle Scholar
  21. 20).
    Vogel, H., Physik Z. 22, 645 (1921).Google Scholar
  22. 21).
    Williams, M. L., R. F. Landel, and J. D. Ferry, J. Amer. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  23. 22).
    Plazek, D. J. and V. M. O’Rourke, J. Polymer Sci. A2, 9, 209 (1971).CrossRefGoogle Scholar
  24. 23).
    Nagamatsu, K. and T. Yoshitomi, J. Colloid Sci. 14, 377 (1959).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • D. J. Plazek
    • 1
  • V. Tan
    • 1
  • V. M. O’Rourke
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Mellon InstitutePittsburghUSA

Personalised recommendations