Skip to main content

Initiation of Apoptotic Signal by the Peroxidation of Cardiolipin of Mitochondria

  • Chapter
Mitochondrial Pathogenesis

Part of the book series: Annals of the New York Academy of Sciences ((ANYAS,volume 1011))

Abstract

Overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in mitochondria of RBL2H3 cells (M15 cells) prevented the release of cytochrome c (cyt. c), the activation of caspase-3, and apoptosis caused by 2-deoxyglucose (2DG), whereas cells overexpressing nonmitochondrial PHGPx(L9) and control (S1) cells were induced to apoptosis. Hydroperoxide levels in mitochondria of L9 and S1 cells were significantly enhanced by 2DG-induced apoptosis. In contrast, generation of hydroperoxide in mitochondria was protected in M15 cells, which also showed resistance to apoptosis by etoposide, staurosporine, UV irradiation, cycloheximide, and actinomycin D, stimuli that induce apoptosis by the liberation of cyt. c from mitochondria. Cyt.c preferentially binds to the monolayer of cardiolipin (CL), the specific phospholipid of the inner membrane of mitochondria. The amount of cyt. c bound to the monolayer of cardiolipin hydroperoxide (CL-OOH) was much lower than that bound to CL. Cytc bound to liposome containing CL was released by peroxidation with a radical initiator. Adenine nucleotide translocator (ANT), which regulates the opening and closing the permeability transition (PT) pore, potentially was inactivated in apoptosis-induced S1 cells 4 h after the addition of 2DG, coincidentally with cyt. c release from mitochondria. ANT activity was suppressed by the fusion of isolated mitochondria with liposomes containing CL-OOH. ANT activity was expressed in proteoliposomes containing 10% CL, but it was competitively inhibited by the addition of CL-OOH. This study suggests that CL peroxidation might have an initiating role in the liberation of cyt. c from the inner membrane, and in the opening of the PT pore via inactivation of ANT. Mitochondrial PHGPx might play a role as an anti-apoptotic factor by protecting CL and reducing CL-OOH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57: 231–245.

    Article  CAS  PubMed  Google Scholar 

  2. Skulachev, V.P. 1998. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423: 275–280.

    Article  CAS  PubMed  Google Scholar 

  3. Donato, N.J. & M. Perez. 1998. Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAFl proteolysis in ME-180 cells. J. Biol. Chem. 273: 5067–5072.

    Article  CAS  PubMed  Google Scholar 

  4. Quillet-Mary, A., J.P. Jaffrezou, V. Mansat, et al. 1997. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J. Biol. Chem. 272: 21388–21395.

    Article  CAS  PubMed  Google Scholar 

  5. Zamzani, N., P. Marchetti, M. Castedo, et al. 1995. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182: 367–377.

    Article  Google Scholar 

  6. Hockenbery, D.M., Z.N. Oltvai, X.M. Yin, et al. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251.

    Article  CAS  PubMed  Google Scholar 

  7. Manna, S.K., H.J. Zhang, T. Yan, et al. 1998. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-B and activated protein-1. J. Biol. Chem. 273: 13245–13254.

    Article  CAS  PubMed  Google Scholar 

  8. Ursini, F., M. Maiorino, M. Valente, et al. 1982. Purification from pig liver of protein which protects liposomes and biomembrane from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxide. Biochim. Biophys. Acta 710: 197–211.

    Article  CAS  PubMed  Google Scholar 

  9. Ursini, F., M. Maiorino & C. Gregolin. 1985. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839: 62–72.

    Article  CAS  PubMed  Google Scholar 

  10. Arai, M., H. Imai, T. Koumura, et al. 1999. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem. 274: 4924–4933.

    Article  CAS  PubMed  Google Scholar 

  11. Nomura, K., H. Imai, T. Koumura, et al. 1999. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J. Biol. Chem. 274: 29294–29302.

    Article  CAS  PubMed  Google Scholar 

  12. Jacotot, E., P. Costantini, E. Laboureau, et al. 1999. Mitochondrial membrane permeabilization during the apoptotic process. Ann. N.Y Acad. Sci. 887: 18–30.

    Article  CAS  PubMed  Google Scholar 

  13. Crompton, M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341: 233–249.

    Article  CAS  PubMed  Google Scholar 

  14. Hoch, F.L. 1992. Cardiolipins and biomembrane function. Biochim. Biophys. Acta 1113: 71–133.

    Article  CAS  PubMed  Google Scholar 

  15. Schlame, M., D. Rua & M.L. Greenberg. 2000. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 39: 257–288.

    Article  CAS  PubMed  Google Scholar 

  16. Nomura, K., H. Imai, T. Koumura, et al. 2000. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 351: 183–193.

    Article  CAS  PubMed  Google Scholar 

  17. Brown, L.R. & K. Wuthrich. 1977. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim. Biophys. Acta 468: 110–389.

    Google Scholar 

  18. Heimburg, T., P. Hildebrandt & D. Marsh. 1991. Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry 30: 9084–9089.

    Article  CAS  PubMed  Google Scholar 

  19. Shidoji, Y., K. Hayashi, S. Komura, et al. 1999. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem. Biophys. Res. Commun. 264: 343–347.

    Article  CAS  PubMed  Google Scholar 

  20. Rytomaa, M. & P.K. Kinnunen. 1995. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. J. Biol. Chem. 270: 3197–3202.

    Article  CAS  PubMed  Google Scholar 

  21. Rytomaa, M. & P.K. Kinnunen. 1994. Evidence for two distinct acidic phospholipidbinding sites in cytochrome c. J. Biol. Chem. 269: 1770–1774.

    CAS  PubMed  Google Scholar 

  22. Jemmerson, R., J. Liu, D. Hausauer, et al. 1999. A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry 38: 3599–3609.

    Article  CAS  PubMed  Google Scholar 

  23. Imai, H., T. Koumura, R. Nakajima, et al. 2003. Protection from inactivation of adenine nucleotide translocator during hypo-glycemia-induced apoptosis by mitochon-drial phospholipid hydroperoxide glutathione peroxidase. Biochem. J. 371: 1–11.

    Article  Google Scholar 

  24. Kowaltowski, A.J., L.E. Netto & A.E. Vercesi. 1998. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273: 12766–12769.

    Article  CAS  PubMed  Google Scholar 

  25. Halestrap, A.P., K.Y. Woodfield & C.P. Connern. 1997. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem. 272: 3346–3354.

    Article  CAS  PubMed  Google Scholar 

  26. Vander Heiden, M.G., N.S. Chandel, P.T. Schumacker & C.B. Thompson. 1999. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell. 3: 159–167.

    Article  CAS  PubMed  Google Scholar 

  27. Vander Heiden, M.G., D.R. Plas, J.C. Rathmell, et al. 2001. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21: 5899–5912.

    Article  Google Scholar 

  28. Paradies, G., F.M. Ruggiero, G. Petrosillo, et al. 1998. Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett. 424: 155–158.

    Article  CAS  PubMed  Google Scholar 

  29. Bogdanov, M. & W. Dowhan. 1999. Lipid-assisted protein folding. J. Biol. Chem. 274: 36827–36830.

    Article  CAS  PubMed  Google Scholar 

  30. Lange, C., J.H. Nett, B.L. Trumpower, et al. 2001. Specific roles of protein-phospholipid interactions in the yeast cytochrome bcl complex structure. EMBO J. 20: 6591–6600.

    Article  CAS  PubMed  Google Scholar 

  31. Beyer, K. & M. Klingenberg. 1985. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24: 3821–3826.

    Article  CAS  PubMed  Google Scholar 

  32. Beyer, K. & B. Nuscher 1996. Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria. Biochemistry 35: 15784–15790.

    Article  CAS  PubMed  Google Scholar 

  33. Godeas, C., G. Sandri & E. Panhli. 1994. Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria. Biochim. Biophys. Acta 1191: 147–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Nakagawa .

Editor information

Hong Kyu Lee Salvatore DiMauro Masashi Tanaka Yau-Huei Wei

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakagawa, Y. (2004). Initiation of Apoptotic Signal by the Peroxidation of Cardiolipin of Mitochondria. In: Lee, H.K., DiMauro, S., Tanaka, M., Wei, YH. (eds) Mitochondrial Pathogenesis. Annals of the New York Academy of Sciences, vol 1011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41088-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41088-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57331-491-6

  • Online ISBN: 978-3-662-41088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics