Skip to main content

Part of the book series: Experimental Brain Research ((BRAIN))

  • 46 Accesses

Abstract

When participants are asked to localize the first position of a moving stimulus they typically mislocalize it in the direction of the movement (Fröhlich Effect; Fröhlich, 1923). As possible mechanisms causing the Fröhlich Effect a low-level motion-deblurring mechanism and a high-level attentional account are discussed (Aschersleben & Müsseler, 1997; Müsseler & Aschersleben, 1996). In anyway, the mislocalization points to a temporal error indicating a delay in the subjective timing of a moving stimulus. However, this delay is in contrast to other findings according to which moving stimuli are processed faster than stationary stimuli. We explored this dissociation in four experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschersleben, G. & Prinz, W. (1995). Synchronizing actions with events: The role of sensory information. Perception & Psychophysics, 57, 305–317.

    Article  CAS  Google Scholar 

  2. Gehrke, J., Aschersleben, G., & Prinz, W. (1997). Processing of afferent feedback and the timing of actions: Evidence for a sensory accumulator model of synchronization. Ms submitted for publication.

    Google Scholar 

  3. Freund, H.-J., & Budingen, H.J. (1978). The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Experimental Brain Research, 31, 1–12.

    Article  CAS  Google Scholar 

  4. Fraisse, P. (1984). Perception and estimation of time. Annual Review of Psychology, 35, 1–36.

    Article  PubMed  CAS  Google Scholar 

  5. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340–370.

    Article  PubMed  CAS  Google Scholar 

  6. Thomas, E. A., & Weaver, W. B. (1975). Cognitive processing and time perception. Perception & Psychophysics, 17, 363–367.

    Article  Google Scholar 

  7. Preilowski, B. (1990). Intermanual transfer, interhemispheric interaction, and handedness in man and monkeys. In C. Trevarthen (Ed.), Brain circuits and functions of the mind. Essays in honor of Roger W. Sperry, (pp. 168–180). Cambridge: Cambridge University Press.

    Google Scholar 

  8. Preilowski, B. (1995). Functions of the corpus callosum in interhemispheric interaction: transfer and inhibitory modulation. Society for Neuroscience Abstracts, 21, 1423.

    Google Scholar 

  9. Aschersleben, G. & Müsseler, J. (1997). Dissociations in the timing of stationary and moving stimuli. Ms submitted for publication.

    Google Scholar 

  10. Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie, 54, 58–78.

    Google Scholar 

  11. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neuroscience, 15, 20–25.

    Article  CAS  Google Scholar 

  12. Müsseler, J. & Aschersleben, G. (1996). Zur Rolle visueller Aufmerksamkeitsverlagerungen bei der Etablierung einer (subjektiv berichtbaren) Raumrepräsentation. In B. Mertsching (Ed.), Aktives Sehen in technischen und biologischen Systemen (pp. 83–92). Sankt Augustin (FRG): Infix.

    Google Scholar 

  13. Maquet et al. (1996) Neuroimage 3, 119–126.

    Article  PubMed  CAS  Google Scholar 

  14. Friston K. J. et al. (1989) JCBFM 9, 690–5.

    CAS  Google Scholar 

  15. Friston K. J. et al. (1991) JCAT 19, 634–9.

    Google Scholar 

  16. Friston K. J. et al. (1991) JCBFM 11, 690–9.

    CAS  Google Scholar 

  17. Posner and Petersen, (1990) ARN 13, 25–42.

    CAS  Google Scholar 

  18. Steinbüchel, N. v., Pöppel, E. (1991). Assessment of mental functions in patients with epilepsy: Cognitive models and ecological Constraints. In: The Assessment of Cognitive function in Epilepsy. Edwin Dodson, W., Kinsbourne, M., Hiltbrunner, B. Demos Publications, New York 97–107.

    Google Scholar 

  19. Steinbüchel, N. v. & Wittmann, M. (1996): Elementare zeitliche Informationsverarbeitung als Dignoseinstrument zentralnerv—ser St-rungen. In: E. Kasten, M.R. Kreutz, B.A. Sabel (Ed.). Neuropsychologie in Forschung und Praxis. Yearbook of Medical Psychology 12, S. 146-163.

    Google Scholar 

Download references

Authors

Editor information

Nicole von Steinbüchel Alexander Steffen Marc Wittmann

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Steinbüchel, N., Steffen, A., Wittmann, M. (1997). Time. In: von Steinbüchel, N., Steffen, A., Wittmann, M. (eds) 29th Annual General Meeting of the European Brain and Behaviour Society. Experimental Brain Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-40459-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-40459-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-39400-7

  • Online ISBN: 978-3-662-40459-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics