Advertisement

On Bayesian Methods for Seeking the Extremum

  • J. Močkus
Part of the Lecture Notes in Computer Science book series (LNCIS)

Abstract

Many well known methods for seeking the extremum had been developed on the basis of quadratic approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J., Mockus. On a Bayesian method for seeking an extremum. Automatika i vychislitelnaja tekhnika, N 3, 1972.Google Scholar
  2. 2.
    J. Mockus. On the Bayesian methods of optimization. In “Minimization Algorithms and Dynamic Systems” ed. by G. Szego and L. Dixon. North-Holland Publ., Amsterdam (in print).Google Scholar
  3. 3.
    V. šaltenis. On a method of multiextremal optimization. Automatika i vychislitelnaja tekhnika, N 3, 1973.Google Scholar
  4. 4.
    A. Žilinskas and J. Mockus. On a Bayes method for seeking an extremum. Automatika i vychislitelnaja tekhnika, N 3, 1972.Google Scholar
  5. 5.
    L.A. Rastrigin. The stochastic methods of search. Nauka, Moscow, 1968.Google Scholar
  6. 6.
    A. Žilinskas. One-stage Bayesian method for unidimensional search. Preprint N 663–74. VINITI, Moscow, 1974.Google Scholar
  7. 7.
    L. Telksnys and V. Šaltenis. The application of multiextremal methods to the problem of estimation of parameters of random signals. Proc. 5th Conf. on extremal problems. Gorkij (in print).Google Scholar
  8. 8.
    A. Ališauskas, A. Lipskis, A. MaSiulis, V. Šaltenis. The application of multiextremal optimization to the planning of experiments for the development of high temperature — resistant polymeric compositions. Proc. 9th Seminar on the stochastic search. Kharkov (in print).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. Močkus
    • 1
  1. 1.Institute of Physics and MathematicsAcademy of Sciences Lithuanian SSRVilniusUSSR

Personalised recommendations