Skip to main content

Skeletal Muscle Weakness and Fatigue in Old Age: Underlying Mechanisms

  • Chapter
Special Focus on the Biology of Aging

Abstract

Although muscle atrophy, decline in muscle strength, and physical frailty are widely accepted as inevitable concomitants of old age (Kaldor & DiBattista, 1979), the underlying causes are not known. Consequently, the degree to which these changes are preventable and treatable is unclear. Understanding the mechanisms involved may assist in the interpretation of the causes of instability and falls that are common for elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alnaqeeb, M. A., Al Zaid, N. S., & Goldspink, G. (1984). Connective tissue changes and physical properties of developing and ageing skeletal muscle. Journal of Anatomy, 139, 677–689.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asmussen, E. (1980). Aging and exercise. In S. M. Horvath & M. K. Yousef (Eds.), Environmental physiology: Aging, heat and altitude (3, pp. 419–428). New York: Elsevier North Holland.

    Google Scholar 

  • Bárány, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. Journal of General Physiology, 50, 197–216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brody, I. A. (1976). Regulation of isometric contraction in skeletal muscle. Experimental Neurology, 50, 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S. V., & Faulkner, J. A. (1988). Contractile properties of skeletal muscles from young, adult and aged mice. Journal of Physiology (London) 404, 71–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks, S. V., & Faulkner, J. A. (1990a). Contraction-induced injury: Recovery of skeletal muscles in young and old mice. American Journal of Physiology, 258 (Cell Physiol. 27), C436–C442

    Google Scholar 

  • Brooks, S. V., & Faulkner, J. A. (1990b). Power outputs of extensor digitorum longus muscles from young, adult and old mice. Journal of Gerontology, in press.

    Google Scholar 

  • Brown, M. C., Holland, R. L., & Hopkins, W. G. (1981). Motor nerve sprouting. Annual Review of Neuroscience, 4, 17–42.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, S.A., Newton, D., & Woledge, R. C. (1989). Effect of age on voluntary force and cross-sectional area of human adductor pollicis muscle. Quarterly Journal of Experimental Physiology, 74, 359–362.

    PubMed  CAS  Google Scholar 

  • Burke, R. E. (1981). Motor units: Anatomy, physiology, and functional organization. In Handbook of Physiology: The nervous system Vol. 2, Part 1 (pp. 345–423). Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Burke, R. E., Levine, D. N., Tsairis, P., & Zajac, F. E. (1973). Physiological types and histochemical profiles in motor units of the cat gastrocnemius. Journal of Physiology (London) 234, 723–748.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campbell, M. J., McComas, A. J., & Petito, F. (1973). Physiological changes in ageing muscles. Journal of Neurology, Neurosurgery, and Psychiatry, 36, 174–182.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carlson, B. M., & Faulkner, J. A. (1988). Reinnervation of long-term denervated rat muscle freely grafted into an innervated limb. Experimental Neurology, 102, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, B. M., & Faulkner, J. A. (1989). Muscle transplantation between young and old rats: Age of host determines recovery. American Journal of Physiology, 256 (Cell Physiol. 25), C1262–C1266.

    Google Scholar 

  • Close, R. (1964). Dynamic properties of fast and slow skeletal muscles of the rat during development. Journal of Physiology (London), 173, 74–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Close, R. (1965). The relation between intrinsic speed of shortening and duration of the active state of muscle. Journal of Physiology (London), 180, 542–559.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Close, R. I. (1972). Dynamic properties of mammalian skeletal muscles. Physiological Review, 52, 129–197.

    CAS  Google Scholar 

  • Côté, C., & J. A. Faulkner. (1984). Motor unit function in skeletal muscle autografts of rats. Experimental Neurology, 84, 292–305.

    Article  PubMed  Google Scholar 

  • Daw, C. K., Starnes, J. W., & White, T. P. (1988). Muscle atrophy and hypoplasia with aging: Impact of training and food restriction. Journal of Applied Physiology, 64, 2428–2432.

    PubMed  CAS  Google Scholar 

  • Dudley, G. A., & Fleck, S. J. (1984). Metabolite changes in aged muscle during stimulation. Journal of Gerontology, 39, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Eddinger, T. J., Cassens, R., & Moss, R. L. (1986). Mechanical and histochemical characterization of skeletal muscles from senescent rats. American Journal of Physiology, 251 (Cell Physiol. 20), C421–C430.

    Google Scholar 

  • Eddinger, T. J., Moss, R. L., & Cassens, R. G. (1985). Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. Journal of Histochemistry and Cytochemistry, 33, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  • Edström, L., & Larsson, L. (1987). Effects of age on contractile and enzyme- histochemical properties of fast- and slow-twitch single motor units in the rat. Journal of Physiology (London), 392, 129–145.

    PubMed  PubMed Central  Google Scholar 

  • Elzinga, G., Stienen, G. J. M., & Wilson, G. A. (1989). Isometric force production before and after chemical skinning in isolated muscle fibres of the frog Rana Temporaria. Journal of Physiology (London), 410, 171–185.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Everitt, A. V., Shorey, C. D., & Ficarra, M. A., (1985). Skeletal muscle aging in the hind limb of the old male Wistar rat: inhibitory effect of hypophysectomy and food restriction. Archives of Gerontology and Geriatrics, 4, 101–115.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, R. P., Martin, T. P., & Ardies, C. M. (1981). The interaction of aging and endurance exercise upon the mitochondrial function of skeletal muscle. Journal of Gerontology, 36, 642–745.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J. A., & Brooks, S.V. (1989). Aging & skeletal muscle: changes in contractile properties. The Gerontologist, 29, 280A.

    Article  Google Scholar 

  • Faulkner, J. A., & White, T. P. (1990). Adaptations of skeletal muscle to physical activity. In C. Bouchard, R. J. Shepherd, T. Stephens, J. R. Sutton, & B. McPherson, (Eds.), Exercise, fitness and health (pp. 265–279). Champaign, IL: Human Kinetics Publishers.

    Google Scholar 

  • Faulkner, J. A., Claflin, D. R., & McCully, K. K. (1986). Power output of fast and slow fibers from human skeletal muscles. In N. L. Jones, N. McCartney, & J. McComas (Eds.), Human power output (pp. 81–94). Champaign, IL: Human Kinetics Publishers.

    Google Scholar 

  • Fitts, R. H., Troup, J. P., Witzmann, F. A., & Holloszy, J. O. (1984). The effect of ageing and exercise on skeletal muscle function. Mechanisms of Ageing and Development, 27, 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J. R. (1989). Limitations of interpretation of age-related changes in hormone levels: Illustration by effects of thyroid hormones on cardiac and skeletal muscle. Journal of Gerontology, 44, B107–109.

    Article  Google Scholar 

  • Florini, J. R., & Ewton, D. Z. (1989). Skeletal muscle fiber types and myosin ATPase activity do not change with age or growth hormone administration. Journal of Gerontology, 44, Bl10–117.

    Article  Google Scholar 

  • Foehring, R. C., Sypert, G. W., & Munson, J. B., (1986). Properties of self-reinnervated motor units of medial gatrocnemius of cat. I. Long-term reinnervation. Journal of Neurophysiology, 55, 931–946.

    PubMed  CAS  Google Scholar 

  • Goldspink, G. (1983). Alterations in myofibril size and structure during growth, exercise, and changes in environmental temperature. In L. D. Peachey, R. H. Peachey, R. H. Adrian, & S. R. Geiger (Eds.) Handbook of physiology (Sec. 10): Skeletal muscle (pp. 539–554). Bethesda, MD: American Physiology Society.

    Google Scholar 

  • Grimby, B., & Saltin, B., (1983). The aging muscle. Clinical Physiology, 3, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Grimby, G., Danneskiold-Samsoe, B., Hvid, K., & Saltin, B. (1982). Morphology and enzymatic capacity in arm and leg muscles in 78–82 year old men and women. Acta Physiologica Scandinavica, 115, 124–134.

    Article  Google Scholar 

  • Gutmann, E., & Hanzlíkova, V. (1966). Motor units in old age. Nature, 209, 921–922.

    Article  PubMed  CAS  Google Scholar 

  • Holloszy, J. O., & Booth, F. W. (1976). Biochemical adaptations to endurance exercise in muscle. Annual Review of Physiology, 38, 273–291.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. C. B. (1981). Length, diameter and number of ageing skeletal muscle fibres. Gerontology, 27, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Irion, G. L., Vasthare, U. S., & Tuma, R. F. (1987). Age-related change in skeletal muscle blood flow in the rat. Journal of Gerontology, 42, 660–665.

    Article  PubMed  CAS  Google Scholar 

  • Jennekens, F. G. I., Tomlinson, B. E., & Walton, J. N. (1971). Histochemical aspects of five limb muscles in old age: an autopsy study. Journal of the Neurological Sciences, 14, 259–276.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. A., Newham, D. J., Round, J. M., & Tolfree, S. E. J. (1986). Experimental human muscle damage: Morphological changes in relation to other indices of damage. Journal of Physiology (London), 375, 435–448.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaldor, G., & DeBattista, W. J. (1979). Aging in muscle (Vol. 6). New York: Raven Press.

    Google Scholar 

  • Kanda, K., & Hashizume, K. (1989). Changes in properties of the medial gastrocnemius motor units in aging. Journal of Neurophysiology, 61, 737–746.

    PubMed  CAS  Google Scholar 

  • Lannergren, J., & Westerblad, H., (1987). The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. Journal of Physiology (London) 390, 285–293.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsson, L. (1983). Histochemical characteristics of human skeletal muscle during aging. Acta Physiologica Scandinavica, 117, 469–471.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. M., Parry, D. J., & Rowlerson, A. (1982). Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle. Journal of Physiology (London) 325, 393–401.

    PubMed  CAS  PubMed Central  Google Scholar 

  • MacDougall, J. D., Elder, G. C. B., Sale, D. G., Moroz, J. R., & Sutton, J. R. (1980). Effects of strength training and immobilization on human muscle fibers. European Journal of Applied Physiology, 43, 25–34.

    Article  CAS  Google Scholar 

  • Maughan, R. J., Watson, J. S., & Wehr, J. (1983). Strength and cross-sectional area of human skeletal muscle. Journal of Physiology (London) 338, 37–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCarter, R., & McGee, J. (1987). Influence of nutrition and aging on the composition and function of rat skeletal muscle. Journal of Gerontology, 42, 432–441.

    Article  PubMed  CAS  Google Scholar 

  • McCully, K. K., & Faulkner, J. A. (1985). Injury to skeletal muscle fibers of mice following lengthening contractions. Journal of Applied Physiology, 59, 119–126.

    PubMed  CAS  Google Scholar 

  • Moore II, D. H. (1975). A study of age group track and field records to relate age and running speed. Nature, 253, 264–265.

    Article  PubMed  Google Scholar 

  • Quetelet, L. A. J. (1835). Sur l’homme et le developpement de ses facultes. In L. Hauman & Cie, (Vol. 2), Paris: Bachelier, Imprimeur-Libraire.

    Google Scholar 

  • Saltin, B., & Gollnick, P. D. (1983). Skeletal muscle adaptability: Significance for metabolism and performance. In Handbook of Physiology (Sec. 10): Skeletal Muscle (pp. 555–631). Bethesda, MD: American Physiology Society.

    Google Scholar 

  • Schulz, R., & Curnow, C. (1988). Peak performance and age among superathletes: Track and field, swimming, baseball, tennis, and golf. Journal of Gerontology, 43, P113–120.

    Article  Google Scholar 

  • Shorey, C. D., Manning, L. A., & Everitt, A. V. (1988). Morphometrical analysis of skeletal muscle fibre ageing and the effect of hypophysectomy and food restriction in the rat. Gerontology, 34, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Stones, M. J., & Kozma, A. (1980). Adult age trends in record running performances. Experimental Aging Research, 5, 407–416.

    Article  Google Scholar 

  • Syrovy, I., & Gutmann, E. (1970). Changes in speed of contraction and ATPase activity in striated muscle during old age. Journal of Experimental Gerontology, 5, 31 – 35.

    Article  CAS  Google Scholar 

  • Tauchi, H., Yoshioka, T., & Kobayashi, H. (1971). Age change of skeletal muscles of rats. Gerontologia, 17, 219–227.

    Article  PubMed  CAS  Google Scholar 

  • Vander, A. J., Sherman, J. H., & Luciano, D. S. (1980). Human physiology: The mechanisms of body function (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Vandervoort, A. A., & McComas, A. J. (1986). Contractile changes in opposing muscles of the human ankle joint with aging. Journal of Applied Physiology, 61, 361–367.

    PubMed  CAS  Google Scholar 

  • Young, A., Stokes, M., & Crowe, M. (1984). Size and strength of the quadriceps muscle of old and young women. European Journal of Clinical Investigation, 14, 82–287.

    Article  Google Scholar 

  • Young, A., Stokes, M., & Crowe, M. (1985). The size and strength of the quadriceps muscle of old and young men. Clinical Physiology, 5, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Zerba, E., Komorowski, T. E., & Faulkner, J. A. (1990a). The role of free radicals in skeletal muscle injury in young, adult, and old mice. American Journal of Physiology, 258, (Cell Physiol.), 27, C429–C435

    Google Scholar 

  • Zerba, E., Komorowski, T. E., & Faulkner, J. A. (1990b). Ultrastructure of injured skeletal muscle in young and old mice. Anatomical Record, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faulkner, J.A., Brooks, S.V., Zerba, E. (1991). Skeletal Muscle Weakness and Fatigue in Old Age: Underlying Mechanisms. In: Cristofalo, V.J., Lawton, M.P. (eds) Special Focus on the Biology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38445-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38445-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37652-2

  • Online ISBN: 978-3-662-38445-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics