Skip to main content

Role of Free Radicals in Senescence

  • Chapter
Special Focus on the Biology of Aging
  • 59 Accesses

Abstract

Free radicals are believed to play a fundamental role in a wide variety of biological phenomena, including aging. The involvement of free radicals in aging has usually been attributed to the destabilizing effects of structural damage. Recent evidence has indicated, however, that there are at least two other mechanisms by which free radicals may influence the aging process. Specific free radical reactions and their effects in biological systems have been reviewed by several authors and will not be extensively examined here to avoid redundancy. Instead, the mechanisms by which free radicals are postulated to influence the aging process shall be the focus of this discussion. It should be noted that none of the mechanisms to be discussed are exclusive of the others and, in fact, all of these explanations may ultimately prove to be necessary to understand fully the role of free radicals in the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. G. (1985). Relationship between gamma irradiation, life span, metabolic rate and accumulation of fluorescent age pigment in the adult male housefly, Musca domestica. Archives of Geronotology and Geriatrics, 4, 169–178.

    Article  CAS  Google Scholar 

  • Allen, R. G., & Balin, A. K. (1989). Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Radical Biology and Medicine, 6, 631–661.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. G., Balin, A. K., Reimer, R. J., Sohal, R. S., & Nations, C. (1988). Superoxide dismutase induces differentiation in the slime mold, Physarwn polycephalum. Archives of Biochemistry and Biophysics, 261, 205–211.

    Article  CAS  Google Scholar 

  • Allen, R. G., & Sohal, R. S. (1982). Life-lengthening effects of γ-radiation on the adult housefly, Musca domestica. Mechanisms of Aging and Development, 20, 369–375.

    Article  CAS  Google Scholar 

  • Allen, R. G., & Sohal, R. S. (1986). Role of glutathione in aging and development of insects. In K.-G. Collatz & R. S. Sohal (Eds.), Insect aging (pp. 168–181). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Balin, A. K. 1982. Testing the free radical theory of aging. In R. C. Adelman & G. C. Roth (Eds.), Testing the theories of aging (pp. 137–182). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Balin, A. K., & Allen, R. G. (1989). Molecular mechanisms of biologic aging. In A. M. Kligman & Y. Takase (Eds.), Cutaneous aging (pp. 7–32). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Balin, A. K., Allen, R. G., & Reimer, R. (1989). Human fibroblast antioxidant defense response to alteration in oxygen tension. In M. G. Simic, K. A. Tayler, J. F. Ward, & C. Sonntag (Eds.), Oxygen radicals in biology and medicine (pp. 707–711). New York: Plenum Publishing.

    Google Scholar 

  • Balin, A. K., Goodman, D.B.P., Rasmussen, H., & Cristofalo, V. J. (1976). The effect of oxygen on growth and metabolism of WI-38 cells. Journal of Cellular Physiology, 89, 235–250.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, B. S., Balin, A. K., & Allen, R. G. (1989). Superoxide dismutase induces differentiation of Friend erythroleukemia cells. Journal of Cellular Physiology, 139, 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Blakely, S. R., Slaughter, L., Adkins, J., & Knight, E. V. (1988). Effects of β-carotene and retinyl palmitate on corn oil-induced superoxide dismutase and catalase in rats. Journal of Nutrition, 118, 152–158.

    PubMed  CAS  Google Scholar 

  • Bjorkstein, J. (1974). Crosslinkage and the aging process. In M. Rockstein (Ed.), Theoretical aspects of aging (pp. 43–60). New York: Academic Press.

    Google Scholar 

  • Bruyninckx, W. J., Mason, H. S., & Morse, S. A. (1978). Are physiological oxygen concentrations mutagenic? Nature (London), 274, 606–607.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annual Review of Biochemistry, 58, 79–110.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Sies, H., & Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 59, 527–605.

    PubMed  CAS  Google Scholar 

  • Chauhan, S.P.S., & Rao, K. V. (1970). Chemically stimulated differentiation of post-nodal pieces of chick blastoderms. Journal of Embryology and Experimental Morphology, 23, 71–78.

    PubMed  CAS  Google Scholar 

  • Child, C. M. (1915). Individuation and reproduction in organisms. In Senescence and rejuvenescence (pp. 199–236). Chicago: Chicago University Press.

    Google Scholar 

  • Cutler, R. G. (1984a). Antioxidants aging and longevity. In W. A. Pryor (Ed.), Free radicals in biology (Vol. 6., pp. 371–428). New York: Academic Press.

    Google Scholar 

  • Cutler, R. G. (1985). Antioxidants and longevity in mammalian species. In A. D. Woodhead, A. D. Blackett, & A. Hollaender (Eds.), Molecular biology of aging (pp. 15–73). New York: Plenum Press.

    Chapter  Google Scholar 

  • Dean, R. G., Socher, S. H., & Cutler, R. G. (1985). Dysdifferentiation nature of aging: Age-dependent expression of mouse mammary tumor virus and casein genes in the brain and liver tissues of the C57BL/6J mouse strain. Archives of Gerontology and Geriatrics, 4, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Donoto, H. (1981). Lipid peroxidation, cross-linking reactions, and aging. In R. S. Sohal (Ed.), Age pigments (pp. 63–81). Amsterdam: Elsevier North Holland.

    Google Scholar 

  • Eggleston, E. V., & Krebs, H. (1974). Regulation of the pentose phosphate cycle. Biochemical Journal, 138, 425–435.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Elroy-Stein, O., Bernstein, Y., & Groner, Y. (1986). Overproduction of human Cu/Zn superoxide dismutase in transfected cells: Extenuation of paraquat-mediated cytotoxic ity and enhancement of lipid peroxidation. EMBO Journal, 5, 615–622.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Florine, D. L., Ono, T., & Cutler, R. G. (1980). Regulation of endogenous murine leukemia virus-related nuclear and cytoplasmic RNA complexity in C57BL/6J mice of increasing age. Cancer Research, 40, 19–523.

    Google Scholar 

  • Foreman, H. J., & Fischer, A. B. (1981). Antioxidant defenses. In D. L. Gilbert (Ed.), Oxygen and living processes (pp. 65–90). New York: Springer-Verlag.

    Google Scholar 

  • Goldstein, S., Srivastava, A., Riabowol, K. T., & Shmookler-Reis, R. J. (1985). Changes in genetic organization and expression in aging cells. In A. D. Woodhead, A. D. Blackett, & A. Hollaender (Eds.), Molecular biology of aging (pp. 255–267). New York: Plenum Press.

    Chapter  Google Scholar 

  • von Hahn, H. P. (1971). Failure of regulation mechanisms as causes of cellular aging. Advances in Gerontological Research, 3, 1–38.

    Google Scholar 

  • Hallgren, H. M., Jackola, D. R., & O’Leary, J. J. (1983). Unusual pattern of surface marker expression on periferal lymphocytes from aged humans suggestive of a population of less differentiated cells. Journal of Immunology131, 191–194.

    CAS  Google Scholar 

  • Halliwell, B. (1981). Free radicals, oxygen toxicity and aging. In R. S. Sohal (Ed.), Age pigments (pp. 1–62). Amsterdam: Elsevier North Holland.

    Google Scholar 

  • Harman, D. (1956). Aging: A theory based on free radical and radiation biology. Journal of Gerontology, 11, 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Harman, D. (1984). Free radicals in aging. Molecular and Cellular Biology, 84, 155 – 161.

    Google Scholar 

  • Hartman, P. (1983). Review: Putative mutagens and carcinogens in foods: I. Nitrate/ nitrite ingestion and gastric cancer mortality. Environmental Mutagenesis, 5, 111 – 121.

    Article  PubMed  CAS  Google Scholar 

  • Hentze, M. W., Rouault, T. A., Harford, J. B., & Klausner, R. D. (1989). Oxidation- reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science, 244, 357–359.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, R. R. (1971). Effects of antioxidants of life span of C57BL mice. Journal of Gerontology, 26, 378–380.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmi, M. S. (1962). The effect of chloracetophenone on the inducing capacity of Henson’s node. Journal of Embryology and Experimental Morphology, 10, 383–388.

    PubMed  CAS  Google Scholar 

  • Lee, H-Y., & Kalmus, G. W. (1976). Studies on cell differentiation: Inducing capacity of sulfhydryl-containing amino acids on post-nodal pieces of chick blastoderms. Journal of Experimental Zoology, 193, 37–48.

    Article  Google Scholar 

  • Loeb, J., & Northrop, J. H. (1917). On the influence of food and temperature on the duration of life. Journal of Biological Chemistry, 32, 103–121.

    CAS  Google Scholar 

  • McCord, J. M., & Fridovich, I. 1969. Superoxide dismutase. Journal of Biological Chemistry, 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • Mead, J. F. (1976). Free radical mechanisms of lipid damage and the consequences for cellular membranes. In W. A. Pryor (Ed.), Free radicals in biology (pp. 51–68). New York: Academic Press.

    Chapter  Google Scholar 

  • Means, A. R., Tash, J. S., Chafouleas, J. G., Lagace, L., and Guerriero, V. (1982). Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP. Annals of the New York Academy of Sciences, 383, 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A., & Anderson, M. E. (1983). Glutathione. Annual Review of Biochemistry, 79, 711–760.

    Article  Google Scholar 

  • Mehlhorn, R. J., & Cole, G. (1985). The free radical theory of aging: A critical review. Advances in Free Radical Biology and Medicine, 1, 165–223.

    Article  CAS  Google Scholar 

  • Nandy, K. (1984). Effects of antioxidants on neuronal lipofuscin pigment. In D. Armstrong, R. S. Sohal, R. G. Cutler, & T. F. Slater (Eds.), Free Radicals in molecular biology, aging and disease (pp. 223–233). New York: Raven Press.

    Google Scholar 

  • Oberley, T. D. (1985). The possible role of reactive oxygen metabolites in cell division. In L. W. Oberley (Ed.), Superoxide dismutase Vol. 3, (pp. 83–97). Boca Raton, FL: CRC Press.

    Google Scholar 

  • O’Leary, J. J., Jackola, D. R., Hallgren, H. M., Abbasnezhad, M., and Yasmineh, W. G. (1983). Evidence for a less differentiated subpopulation of lymphocytes in people of advanced age. Mechanisms of Aging and Development, 21, 109–120.

    Article  Google Scholar 

  • Ono, T., Cutler, R. G. (1978). Age-dependent relaxation of gene expression: Increase of endogenous murine leukemia virus-related and globin-related RNA in brain and liver of mice. Proceedings of the National Academy of Sciences USA, 75, 4431–4435.

    Article  CAS  Google Scholar 

  • Pearl, R. (1928). The rate of living. New York: Knopf Press.

    Google Scholar 

  • Pryor, W. A. (1976). The role of free radical reactions in biological systems. In W. A. Pryor (Ed.), Free radicals in biology (Vol. 1, pp. 1–49). New York: Academic Press.

    Chapter  Google Scholar 

  • Richardson, A., & Semsei, I. (1987). Effect of aging on translation and transcription. In M. Rothstein (Ed.), Review of biological research in aging (Vol. 3, pp. 467–483). New York: Alan R. Liss.

    Google Scholar 

  • Ritcher, C., & Frei, B. (1988). Ca2+ release from mitochondria induced by prooxidants. Free Radical Biology and Medicine, 4, 365–375.

    Article  Google Scholar 

  • Roth, G. S., & Hess, G. D. (1982). Changes in the mechanisms of hormone and neurotransmitter action during aging, current status of the role of the receptor and post-receptor alterations. Mechanisms of Aging and Development, 20, 175–194.

    Article  CAS  Google Scholar 

  • Rubner, M. (1908). Das problem der le lebensdauer. Berlin: Oldenbourg.

    Google Scholar 

  • Schroder, H. C, Messer, R., Bachmann, M., Bernd, A., & Muller, W.E.G. (1987). Superoxide radical-induced loss of nuclear restriction of immature mRNA: A possible cause of aging. Mechanisms of Aging and Development, 41, 251–266.

    Article  CAS  Google Scholar 

  • Scott, J. A. (1984). The role of cytoskeletal integrety in cellular transformation. Journal of Theoretical Biology, 106, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. A., Kahn, B.-A, Homcy, C. J., & Rabito, C. A. (1987). Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells. Biochimica et Biophysica Acta, 897, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, R. S. (1981). Metabolic rate, aging, and lipofuscin accumulation. In R. S. Sohal (Ed.), Age pigments (pp. 303–316). Amsterdam: Elsevier North Holland.

    Google Scholar 

  • Sohal, R. S. (1986). The rate of living theory: A contemporary interpretation. In K.-G. Collatz & R. S. Sohal (Eds.), Insect aging (pp. 23–44). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Sohal, R. S., & Allen, R. G. (1985). Relationship between metabolic rate, free radicals, differentiation and aging: A unified theory. In A. D. Woodhead, A. D. Blackett, & A. Hollaender (Eds.), Molecular biology of aging (pp. 75–104). New York: Plenum Press.

    Chapter  Google Scholar 

  • Sohal, R. S., & Allen, R. G. (1986). Relationship between oxygen metabolism, aging and development. Advances in Free Radical Biology and Medicine, 2, 117–160.

    Article  CAS  Google Scholar 

  • Sohal, R. S., & Allen, R. G. (1990). Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis. Experimental Gerontology, In Press.

    Google Scholar 

  • Sohal, R. S., Allen, R. G., Farmer, K. J., Newton, R. K., & Toy, P. L. (1985). Effects of exogenous antioxidants, on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mechanisms of Aging and Development, 31, 329–336.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Allen, R. G., & Nations, C. (1986). Oxygen free radicals play a role in cellular differentiation: An hypothesis. Journal of Free Radical Biology and Medicine, 2, 175–181.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Svensson, I., Sohal, B. H., & Brunk, U. T. (1989a). Superoxide anion radical production in different animal species. Mechanisms of Aging and Development, 49, 129–135.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Allen, R. G., & Nations, C. (1989b). Oxidative stress and cellular differentiation. Annals of the New York Academy of Sciences, 551, 59–74.

    Article  Google Scholar 

  • Waheed, M. A., & Mulherkar, L. (1967). Studies on induction by substances containing sulfhydryl groups in post-nodal pieces of chick blastoderms. Journal of Embryology and Experimental Morphology, 17, 161–169.

    PubMed  CAS  Google Scholar 

  • Wisniewski, H. M., & Terry, R. D. (1976). Neuropathology of the aging brain. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging (pp. 265–280). New York: Raven Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, R.G. (1991). Role of Free Radicals in Senescence. In: Cristofalo, V.J., Lawton, M.P. (eds) Special Focus on the Biology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38445-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38445-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37652-2

  • Online ISBN: 978-3-662-38445-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics