Advertisement

Antibiotics pp 117-121 | Cite as

Pyocyanine

  • P. G. Caltrider

Abstract

Pyocyanine is a blue pigment produced by Pseudomonas aeruginosa (formerly Ps. pyocyanea). Farber (1951) reported the isolation of pyocyanine from a bacterium named Cyanococcus chromospirans. The antibiotic activity of pyocyanine was observed first by Emmerich and Low (1899). They found that old cultures of Ps. aeruginosa inhibited the growth of a number of Gram-positive and Gram-negative bacteria. Due to the lytic action of culture broths on suspensions of Vibrio comma and Bacillus anthracis, they ascribed the inhibition to an enzyme termed pyocyanase. Later investigations, however, showed that several factors were present, none of which had enzymatic activity, and that the major active principle was pyocyanine. The isolation and chemical nature of pyocyanine has been described by Schoental (1941) and the structure was elucidated by Wrede and Strack (1924, 1929) and Hilleman (1938).

Keywords

Liver Slice Bacillus Anthracis Diamine Oxidase Blue Pigment Methyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J. H., and C. J. Cavallito: The reversal of antibiotic action. J. Bacteriol. 55, 175 (1951).Google Scholar
  2. Campbell, J. J. R., A. M. Mac Quillan, B. A. Eagles, and R. A. Smith: The inhibition of keto acid oxidation by pyocyanine. Can. J. Microbiol. 3, 313 (1957).PubMedCrossRefGoogle Scholar
  3. Carlson, L. D., and J. H. Bodine: Action of certain stimulating and inhibiting substances on the respiration of the grasshopper embryo, Melanoplus dill erentialis. J. Cell. Comp. Physiol. 14, 159 (1939).CrossRefGoogle Scholar
  4. Case, E. M., and H. McILwAin: Respiration and phosphorylation in preparations from mammalian. Biochem. J. 48, 1 (1951).PubMedGoogle Scholar
  5. Cavallito, C. J.: Relationships of thiol structures to reaction with antibiotics. J. Biol. Chem. 164, 29 (1946).PubMedGoogle Scholar
  6. Cavallito, C. J., J. H. Bailey, T. H. Haskell, J. R. Mccormick, and W. F. Warner: The inactivation of antibacterial agents and their mechanism of action. J. Bacteriol. 50, 61 (1945).PubMedGoogle Scholar
  7. Demeio, R. H., M. Kissin, and K. S. G. Barron: Studies on biological oxidations. IV. On the mechanism of the catalytic effect of reversible dyes on cellular respiration. J. Biol. Chem. 107, 579 (1934).Google Scholar
  8. Dickens, F., and H. McILwAin: Phenazine compounds as carriers in the hexose monophosphate system. Biochem. J. 32, 1615 (1938).PubMedGoogle Scholar
  9. Ehrismann, O.: Pyocyanine and bacterial respiration. Z. Hyg. Infektionskrankh. 116, 209 (1934). Chem. Abstr. 28, 5489 (1934).Google Scholar
  10. Emmerich, R., u. O. Low: Bakteriologische Enzyme als Ursache der erworbenen Immunität and die Heilung von Infektionskrankheiten durch dieselben. Z. Immunitätsforsch. 31, 1 (1899).Google Scholar
  11. Farber, G.: New isolated chromogenic microorganism with a high oxidative potency. Sbornik Ceskoslov. akad. zemédélské 23, 355 (1951). Chem. Abstr. 45, 9605 (1951).Google Scholar
  12. Fazekas, J. F., H. Colyer, S. Nesin, and H. E. HimivIcH: Effect of pyocyanine on cerebral metabolism. Proc. Soc. Exptl. Biol. Med. 42, 446 (1939).CrossRefGoogle Scholar
  13. Friedheim, E. A. H.: Pyocyanine, an accessory respiratory enzyme. J. Exptl. Med. 54, 207 (193 1).Google Scholar
  14. Friedheim, E. A. H.: The influence of pyocyanine on the respiration of normal tissues and tumors. Naturwissenschaften 20, 171 (1932).CrossRefGoogle Scholar
  15. Friedheim, E. A. H.: The influence of pyocyanine on the respiration of normal tissues and tumors. Chem. Abstr. 26, 3841 (1932).Google Scholar
  16. Friedheim, E. A. H.: Effect of pyocyanine on the respiration of some normal tissues and tumors. Biochem. J. 28, 173 (1934).PubMedGoogle Scholar
  17. Groscop, J. A., and M. M. Brent: The effects of selected strains of pigmented microorganisms on small, free living amoeba. Can. J. Microbiol. 10, 579 (1964).PubMedCrossRefGoogle Scholar
  18. Harman, J. W., and M. C. Macbrinn: The effect of phenazine methosulphate pyocyanine and Edta on mitochondrial succinic dehydrogenase. Biochem. Pharmacol. 12, 1265 (1963).PubMedCrossRefGoogle Scholar
  19. Hill, R., and D. A. Walker: Pyocyanine and phosphorylation with chloroplasts. Plant Physiol. 34, 240 (1959).PubMedCrossRefGoogle Scholar
  20. Hillemann, H.: Phenazine. I. Action of dimethyl sulfate on phenazine, 1-methoxyphenazine and 1-hydroxyphenazine. Ber. deut. chem. Ges. 71B, 34 (1938).CrossRefGoogle Scholar
  21. Hillemann, H.: Phenazine. I. Action of dimethyl sulfate on phenazine, 1-methoxyphenazine and 1-hydroxyphenazine. Chem. Abstr. 32, 21319 (1938).Google Scholar
  22. Imshenitskii, A. A.: Ecology of pigmented microorganisms. II. Antibiotic action of pigments. Mikrobiologiya 16, 3 (1947).Google Scholar
  23. Judah, J. D., and H. G. Williams-Ashman: The inhibition of oxidative phosphorylation. Biochem. J. 48, 33 (1951).PubMedGoogle Scholar
  24. Kharchenko, N. S., E. O. Ryabushko, and O. I. Petrukhova: Biological activity of a new antibiotic pyocyanine. Vrachebnoe Delo. 27, 19 (1947).Google Scholar
  25. Kharchenko, N. S., E. O. Ryabushko, and O. I. Petrukhova: Biological activity of a new antibiotic pyocyanine. Chem. Abstr. 42, 4675f (1948).Google Scholar
  26. Kun, E., J. L. Bradin jr., and J. M. Dechary: Effect of metabolic inhibitors on production of CO2 and H2S by Endamoeba histolytica. Proc. Soc. Exptl. Biol. 89, 604 (1955).CrossRefGoogle Scholar
  27. Kurachi, M.: Biosynthesis of pyocyanine IX. Effect of pyocyanine on respiration of bacterial cells of Pseudomonas aeruginosa. Bull. Inst. Chem. Research, Kyoto Univ. 38, 364 (1960).Google Scholar
  28. Landau, B. R., A. B. Hastings, and S. Zotter: Pyocyanine and metabolic pathways in liver slices in vitro. Biochim. et Biophys. Acta 74, 629 (1963).Google Scholar
  29. Lannerstrand, A.: Über die Konkurrenz zwischen Azetaldehyd und Pyacyaninmobkularem Sauerstoff im fluoridvergifteten Apozymasesystem. Naturwissenschaften 26, 45 (1938).CrossRefGoogle Scholar
  30. Lichstein, H. C., and M. H. Saule: Studies on the effect of sodium azide on microbic growth and respiration. Iii. The effect of sodium azide on the gas metabolism of Bacillus suvtilis and Pseudomonas aeruginosa and the influence of pyocyanine on the gas exchange of a pyocyanine-free strain of Pseudomonas aeruginosa in the presence of sodium azide. J. Bacteriol. 47, 239 (1944).PubMedGoogle Scholar
  31. Moore, A. R., H. S. Bliss, and E. H. Anderson: Effects of pyocyanine and of lithium on the development and respiration of the eggs of two echinoderms. J. Cell. Comp. Physiol. 25, 27 (1945).CrossRefGoogle Scholar
  32. Marcus, A., and J. Feeley: Effect of phenazine methosulfate and pyocyanine on the L-amino acid oxidase reaction. Biochim. et Biophys. Acta 59, 398 (1962).Google Scholar
  33. Owen jr., C. A., A. G. Karlson, and E. A. Zeller: Enzymology of tubercule bacilli and other mycobacteria. V. Influence of streptomycin and other basic substances on diamine oxidase and various bacteria. J. Bacteriol. 62, 53 (1951).PubMedGoogle Scholar
  34. Pacheco, G., and A. Trejos: Influence of pyocyanine on staphylocoagulase with a method for determining pyocyanine. Brasil-med. 59, 169 (1945).Google Scholar
  35. Pacheco, G., and A. Trejos: Influence of pyocyanine on staphylocoagulase with a method for determining pyocyanine. Chem. Abstr. 45, 693b (1951).Google Scholar
  36. Schoental, R.: The nature of the antibacterial agents present in Pseudomonas pyocyanea cultures. Brit. J. Exptl. Pathol. 22, 137 (1941).Google Scholar
  37. Soresina, C.: The effect of pyocyanine on the growth of tissue cultures in vitro. Tumori 12, 306 (1939).Google Scholar
  38. Stheeman, A. A.: Die Rolle des Pyocyanins im Stoffwechsel von Pseudomonas pyocyanea. Biochem. Z. 191, 320 (1927).Google Scholar
  39. Stieb, E. W., and G. C. Walker: Antagonism exhibited by Pseudomonas aeruginosa and Pseudomonas fluorescens toward certain fungus pathogens. II. Can. Pharm. J. 90, 235 (1957).Google Scholar
  40. Stokes, J. L., R. L. Peck, and C. R. Woodward jr.: Antimicrobial action of pyocyanine, hemipyocyanine, pyocyanase and tyrothricin. Proc. Soc. Expl. Biol. 51, 126 (1942).CrossRefGoogle Scholar
  41. Swan, G. A., and D. G. I. Felton: Phenazines, p. 174. New York: Interscience Publ. Inc. 1957.Google Scholar
  42. Waksman, S. A., and H. B. Woodruff: Selective antibiotic action of various substances of microbial origin. J. Bacteriol. 44, 373 (1942).PubMedGoogle Scholar
  43. Weil-Malherbe, H.: Studies on brain metabolism. II. Formation of succinic acid. Biochem. J. 31, 299 (1937a).Google Scholar
  44. Weil-Malherbe, H.: The oxidation of 1(—)a-hydroxyglutaric acid in animal tissues. Biochem. J. 31, 2080 (1937b).Google Scholar
  45. Wrede, F., and E. Strack: Pyocyanin, the blue pigment of Bacillus pyocyaneus. Z. Physiol. Chem. 140, 1 (1924).CrossRefGoogle Scholar
  46. Wrede, F., and E. Strack: Pyocyanin, the blue pigment of Bacillus pyocyaneus. Chem. Abstr. 19, 302 (1925).Google Scholar
  47. Wrede, F., and E. Strack: Pyocyanin, the blue pigment of Bacillus pyocyaneus. IV. The constitution and synthesis of pyocyanin. Hoppe-Seyler’s Z. physiol. Chem. 181, 58 (1929).Google Scholar
  48. Wrede, F., and E. Strack: Pyocyanin, the blue pigment of Bacillus pyocyaneus. IV. The constitution and synthesis of pyocyanin. Chem. Abstr. 23, 2717 (1929).Google Scholar
  49. Young, L.: The effect of pyocyanine on the metabolism of cerebral cortex. J. Biol. Chem. 120, 659 (1937).Google Scholar
  50. Zaugg, W. S.: Spectroscopic characteristics and some chemical properties of N-methylphenazinium methyl sulfate (phenazine methosulf ate) and pyocyanine at the semiquinoid oxidation level. J. Biol. Chem. 239, 3964 (1964).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • P. G. Caltrider

There are no affiliations available

Personalised recommendations