Advertisement

Antibiotics pp 585-610 | Cite as

Oligomycin Complex, Rutamycin and Aurovertin

  • Paul D. Shaw

Abstract

The work described in this chapter resulted largely from the pioneering efforts of Lardy and his coworkers in their search for “toxic” antibiotics which inhibit respiration. The results of such studies have proved that this type of approach could be very fruitful, and much insight has been gained into the mechanism of oxidative phosphorylation and associated phenomena such as mitochondrial swelling and ion transport across membranes. In fact, the use of certain of the antibiotics has provided information which would have been difficult or perhaps impossible to obtain by any other means.

Keywords

ATPase Activity Oxidative Phosphorylation Electron Transport System Usnic Acid Intact Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud, C. D., and H. Rasmussen: Effect of purified parathyroid hormone added in vitro on the respiration of oligomycin-inhibited rat renal tubules. Endocrinology 75, 277 (1964).PubMedCrossRefGoogle Scholar
  2. Azzone, G. F., and L. Ernster: Compartmentation of mitochondrial phosphoryla- tions as disclosed by studies with arsenate. J. Biol. Chem. 236, 1510 (1961).PubMedGoogle Scholar
  3. Baldwin, C. L., L. C. Weaver, R. M. Brooker, T. N. Jacobsen, C. Osborne, JR., and H. A. Nash: Biological and chemical properties of aurovertin, a metabolic product of Calcarisporium arbuscula. Lloydia 27, 88 (1964).Google Scholar
  4. Baltscheffsky, H., and M. Baltscheffsky: Inhibitor studies On light-induced phosphorylation in extracts of Rhodospirillum rubrum. Acta Chem. Scand. 14, 257 (1960).CrossRefGoogle Scholar
  5. Brierly, G. P., E. Bachmann, and D. E. Green: Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc. Natl. Acad. Sci. U.S. 48, 1928 (1962).CrossRefGoogle Scholar
  6. Bruni, A., A. R. Contessa, and P. Scallela: The binding of atractyloside and oligomycin to liver mitochondria. Biochim. et biophys. Acta 100, 1 (1965).Google Scholar
  7. Bruni, A., S. Luciani, A. R. Contessa, and D. F. Azzone: Effects of atractyloside and oligomycin on energy-transfer reactions. Biochim. et Biophys. Acta 82, 630 (1964).Google Scholar
  8. Chance, B.: The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J. Biol. Chem. 236, 1569 (1961 b).Google Scholar
  9. Chance, B.: Energy-linked cytochrome oxidation in mitochondria. Nature 189, 719 (1961 a).Google Scholar
  10. Chappell, J. B., and G. D. Greville: Dependence of mitochondrial swelling on oxidizable substrates. Nature 182, 813 (1958).PubMedCrossRefGoogle Scholar
  11. Chappell, J. B., and G. D. Greville: Inhibition of electron transport and the swelling of isolated mitochondria. Nature 183, 1525 (1959a).PubMedCrossRefGoogle Scholar
  12. Chappell, J. B., and G. D. Greville: Effects of 2, 4-dinitrophenol and other agents on the swelling of isolated mitochondria. Nature 183, 1737 (1959b).Google Scholar
  13. Chappell, J. B., and G. D. Greville: Mitochondrial swelling and electron transport. I. Swelling supported by ferricyanide. Biochim. et Biophys. Acta 38, 483 (1960).Google Scholar
  14. Chappell, J. B., and G. D. Greville: Effects of oligomycin on respiration and swelling of isolated liver mitochondria. Nature 190, 502 (1961).PubMedCrossRefGoogle Scholar
  15. Chappell, J. B., G. D. Greville, and K. C. Bicknell: Stimulation of respiration of isolated mitochondria by manganese ions. Biochem. J. 84, 61 P (1962).Google Scholar
  16. Connelly, J. L., and H. A. Lardy: The effect of adenosine triphosphate and substrate on orthophosphate-induced mitochondrial swelling at acid pH. J. Biol. Chem. 239, 3065 (1964a).PubMedGoogle Scholar
  17. Connelly, J. L., and H. A. Lardy: Antibiotics as tools for metabolic studies. Iii. Effects of oligomycin and aurovertin on the swelling and contraction processes of mitochondria. Biochemistry 3, 1969 (1964 b).Google Scholar
  18. Cooper, C., and R. G. Kulka: Properties of the inorganic orthophosphate-adenosine triphosphate and adenosine diphosphate-adenosine triphosphate exchange reactions of digitonin particles. J. Biol. Chem. 236, 2351 (1961).PubMedGoogle Scholar
  19. Currie, W. D., and C. T. Gregg: Inhibition of the respiration of cultured mammalian cells by oligomycin. Biochem. Biophys. Research Commun. 21, 9 (1965).CrossRefGoogle Scholar
  20. Dallner, G., and L. Ernster: Induction of a crabtree-like effect in Ehrlich ascites tumor cells by oligomycin. Exptl. Cell Research 27, 372 (1962).CrossRefGoogle Scholar
  21. Danielson, L., and L. Ernster: Demonstration of a mitochondrial energy-dependent pyridine nucleotide transhydrogenase reaction. Biochem. Biophys. Research Commun. 10, 91 (1963 a).Google Scholar
  22. Danielson, L., and L. Ernster: Energy dependence of pyridine nucleotide-linked dismutations in rat liver mitochondria. Biochem. Biophys. Research Commun. 10, 85 (1963b).CrossRefGoogle Scholar
  23. Ernster, L.: The phosphorylation occurring in the flavoprotein region of the respiratory chain. Proc. Intern. Congr. Biochem., 5th, Moscow 1961, 5, 115 (1963).Google Scholar
  24. Ernster, L., and C. Lee: Biological oxidoreductions. Ann. Rev. Biochem. 33, 729 (1964).PubMedCrossRefGoogle Scholar
  25. Estabrook, R. W.: Effect of oligomycin on the arsenate and 2, 4-dinitrophenol (Dnp) stimulation of mitochondrial oxidations. Biochem. Biophys. Research Commun. 4, 89 (1961).CrossRefGoogle Scholar
  26. Fang, M., and H. Rasmussen: Parathyroid hormone and mitochondrial respiration. Endocrinology 75, 434 (1964).PubMedCrossRefGoogle Scholar
  27. Fang, M., H. Rasmussen, H. F. DelucA, and R. Young: The influence of parathyroid hormone upon glutamate oxidation in isolated mitochondria. Biochem. Biophys. Research Commun. 10, 260 (1963).CrossRefGoogle Scholar
  28. Glynn, I. M.: An adenosine triphosphatase from electric organ activated by sodium and potassium and inhibited by ouabain or oligomycin. Biochem. J. 84, 75 P (1962).Google Scholar
  29. Harary, I., and E. C. Slater: Studies in vitro on single beating heart cells. Viii. The effect of oligomycin, dinitrophenol and ouabain on the beating rate. Biochim. et Biophys. Acta 99, 227 (1965).Google Scholar
  30. Heldt, H. W., H. Jacobs, and M. Klingenberg: Evidence for the participation of endogenous guanosine triphosphate in substrate level phosphate transfer in intact mitochondria. Biochem. Biophys. Research Commun. 17, 130 (1964).CrossRefGoogle Scholar
  31. Huijing, F., and E. C. Slater: The use of oligomycin as an inhibitor of oxidative phosphorylation. J. Biochem. (Japan) 49, 493 (1961).Google Scholar
  32. Järnefelt, J.: Properties and possible mechanism of the Na+ and K+-stimulated microsomal adenosinetriphosphatase. Biochim. et Biophys. Acta 59, 643 (1962).Google Scholar
  33. Jöbsis, F. F., and H. Vreman: Inhibition of sodium-and potassium-stimulated adenosinetriphosphatase by oligomycin. Biochim. et Biophys. Acta 73, 346 (1963).Google Scholar
  34. Kagawa, Y., and E. Racker: A factor conferring oligomycin sensitivity to mitochondrial Atpase. Federation Proc. 24, 363 (1965).Google Scholar
  35. Kulka, R. G., and C. Cooper: The action of oligomycin on the inorganic orthophosphate-adenosine triphosphate and adenosine diphosphate-adenosine triphosphate exchange reactions of digitonin particles. J. Biol. Chem. 237, 936 (1962).PubMedGoogle Scholar
  36. Lardy, H. A., J. L. Connelly, and D. Johnson: Antibiotics as tools for metabolic studies. II. Inhibition of phosphoryl transfer in mitochondria by oligomycin and aurovertin. Biochemistry 3, 1961 (1964).PubMedCrossRefGoogle Scholar
  37. Lardy, H. A., D. Johnson, and W. C. Mcmurray: Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch. Biochem. Biophys. 78, 587 (1958).CrossRefGoogle Scholar
  38. Lardy, H. A., and W. C. Mcmurray: The mode of action of oligomycin. Federation Proc. 18, 269 (1959).Google Scholar
  39. Lardy, H. A., P. Witonsky, and D. Johnson: Antibiotics as tools for metabolic studies. IV. Comparative effectiveness of oligomycins A, B, C, and rutamycin as inhibitors of phosphoryl transfer reactions in mitochondria. Biochemistry 4, 552 (1965).PubMedCrossRefGoogle Scholar
  40. Larson, M. H., and W. H. Peterson: Chromatographic study of the oligomycin complex produced under various conditions of fermentation. Appl. Microbiol. 8, 182 (1960).PubMedGoogle Scholar
  41. Lee, C. P., G. F. Azzone, and L. Ernster: Evidence for energy coupling in nonphosphorylating electron transport particles from beef-heart mitochondria. Nature 201, 152 (1964).PubMedCrossRefGoogle Scholar
  42. Lee, C., and L. Ernster: Restoration of oxidative phosphorylation in non-phosphorylating submitochondrial particles by oligomycin. Biochem. Biophys. Research Commun. 18, 523 (1965).CrossRefGoogle Scholar
  43. Lehninger, A. L.: Intermediate enzymatic reactions in the coupling of phosphorylation to electron transport. Symp. Intracellular respiration: Phosphorylating and non-phosphorylating oxidation reduction. Proc. Intern. Congr. Biochem., 5th, Moscow 1961, 5, 239 (1963).Google Scholar
  44. Lenaz, G.: Effect of aurovertin on energy-linked processes related to oxidative phosphorylation. Biochem. Biophys. Research Commun. 21, 170 (1965).CrossRefGoogle Scholar
  45. Marty, E. W., JR., and E. Mccoy: The chromatographic separation and biological properties of the oligomycins. Antibiotics & Chemotherapy 9, 286 (1959).Google Scholar
  46. Masamune, S., J. M. Sehgal, E. E. Van Tamelen, F. M. Strong, and W. H. Peterson: Separation and preliminary characterization of oligomycins A, B, and C. J. Am. C.em. Soc. 80, 6092 (1958).CrossRefGoogle Scholar
  47. Michel, R., P. Huet, and M. Huet: Action of rutamycin (A 272) on rat hepatic mitochondria adenosinetriphosphatases. Compt. rend. soc. biol. 158, 994 (1964).Google Scholar
  48. Minakami, S., K. Kakinuma, and H. Yoshikawa: The control of respiration in brain slices. Biochim. et Biophys. Acta 78, 808 (1963).Google Scholar
  49. Minakami, S., and H. Yoshikawa: Effect of oligomycin on the phosphorylating respiration of ascites hepatoma cells. Biochim. et Biophys. Acta 74, 793 (1963).Google Scholar
  50. Neubert, D., and A. L. Lehninger: Effect of oligomycin, gramicidin and other antibiotics on reversal of mitochondrial swelling by adenosine triphosphate (Atp). Biochim. et Biophys. Acta 62, 556 (1962).Google Scholar
  51. Sallis, J. D., and H. F. Deluca: Parathyroid hormone interaction with the oxidative phosphorylation chain. Effect on adenosine-triphosphatase activity and the adenosine triphosphate-orthophosphate exchange reaction. J. Biol. Chem. 239, 4303 (1964).PubMedGoogle Scholar
  52. Sallis, J. D., H. F. DelucA, and D. L. Martin: Parathyroid hormone-dependent transport of inorganic phosphate by rat liver mitochondria. Effect of phosphorylation chain inhibitors. J. Biol. Chem. 240, 2229 (1965).PubMedGoogle Scholar
  53. Sallis, J. D., H. F. DE Luca, and H. Rasmussen: Parathyroid hormone stimulation of phosphate uptake by rat liver mitochondria. Biochem. Biophys. Research Commun. 10, 266 (1963a).CrossRefGoogle Scholar
  54. Sallis, J. D., H. F. DE Luca, and H. Rasmussen: Parathyroid hormone-dependent uptake of inorganic phosphate by mitochondria. J. Biol. Chem. 238, 4098 (1963b).PubMedGoogle Scholar
  55. Slater, E. C., and J. M. Tager: Synthesis of glutamate from a-oxoglutarate and ammonia in rat-liver mitochondria. V. Energetics and mechanism. Biochim. et Biophys. Acta 77, 276 (1963).Google Scholar
  56. Slater, E. C., J. M. Tager, and A. M. Snoswell: The mechanism of the reduction of mitochondrial Dpn+ coupled with the oxidation of succinate. Biochim. et Biophys. Acta 56, 177 (1962).Google Scholar
  57. Smith, R. M., W. H. Peterson, and E. McCoy: Oligomycin, a new antifungal antibiotic. Antibiotics & Chemotherapy 4, 962 (1954).Google Scholar
  58. Snoswell, A. M.: The mechanism of the reduction of mitochondrial diphosphopyridine nucleotide by succinate in rabbit-heart sarcosomes. Biochim. et Biophys. Acta 52, 216 (1961).Google Scholar
  59. Snoswell, A. M.: The reduction of diphosphopyridine nucleotide of rabbit-heart sarcosomes by succinate. Biochim. et Biophys. Acta 60, 143 (1962).Google Scholar
  60. Stoner, C., and J. Hanson: Swelling and contraction of corn mitochondria. Plant Physiol. 41, 255 (1966).PubMedCrossRefGoogle Scholar
  61. Tager, J. M.: Synthesis of glutamate from a-oxoglutarate and ammonia in rat-liver mitochondria. Iii. Malate as hydrogen donor. Biochim. et Biophys. Acta 77, 258 (1963).Google Scholar
  62. Tager, J. M., J. L. Howland, E. C. Slater, and A. M. Snoswell: Synthesis of glutamate from cc-oxoglutarate and ammonia in rat-liver mitochondria. IV. Reduction of nicotinamide nucleotide coupled with the aerobic oxidation of tetramethyl-p-phenylenediamine. Biochim. et Biophys. Acta 77, 266 (1963).Google Scholar
  63. Tager, J. M., and E. C. Slater: Synthesis of glutamate from a-oxoglutarate and ammonia in rat-liver mitochondria. II. Succinate as hydrogen donor. Biochim. et Biophys. Acta 77, 246 (1963a).Google Scholar
  64. Tager, J. M., and E. C. Slater: Synthesis of glutamate from cc-oxoglutarate and ammonia in rat-liver mitochondria. I. Comparison of different hydrogen donors. Biochim. et Biophys. Acta 77, 227 (1963b).Google Scholar
  65. Thompson, R. Q., M. M. Hoehn, and C. E. Higgins: Crystalline antifungal antibiotic isolated from a strain of Streptomyces rutgersensis. Antimicrobial Agents and Chemotherapy, p. 474 (1961).Google Scholar
  66. Tobin, R. B., and E. C. Slater: The effect of oligomycin on the respiration of tissue slices. Biochim. et Biophys. Acta 105, 214 (1965).Google Scholar
  67. Utsumi, K., and G. Yamamoto: Mitochondrial swelling and uncoupling of oxidative phosphorylation by arginine-rich histone extracted from calf thymus. Biochim. et Biophys. Acta 100, 606 (1965).Google Scholar
  68. van Rossum, G. D. V.: Effect of oligomycin on cation transport in slices of rat liver. Biochem. J. 84, 35 P (1962).Google Scholar
  69. van Rossum, G. D. V.: Effect of oligomycin on net movements of sodium and potassium in mammalian cells in vitro. Biochim. et Biophys. Acta 82, 556 (1964).Google Scholar
  70. Van Gronigen, M. E. M., and E. C. Slater: Effect of oligomycin on the (Na++K+)-activated Mg++ Atpase of brain microsomes and erythrocyte membranes. Biochim. et Biophys. Acta 73, 527 (1963).Google Scholar
  71. Wadkins, C. L.: Inhibition of the dinitrophenol-sensitive adenosine triphosphate (Atp)-adenosine diphosphate (Adp) exchange reaction by oligomycin. Biochem. Biophys. Research Commun 7, 70 (1962).CrossRefGoogle Scholar
  72. Wadkins, C. L., and A. L. Lehninger: Role of Atp-Adp exchange reaction in oxidative phosphorylation. Federation Proc. 22, 1092 (1963 a).Google Scholar
  73. Wadkins, C. L., and A. L. Lehninger: Distribution of an oligomycin-sensitive adenosine triphosphate-adenosine diphosphate exchange reaction and its relationship to the respiratory chain. J. Biol. Chem. 238, 2555 (1963b).Google Scholar
  74. WhittAM, R., K. P. Wheeler, and A. Blake: Oligomycin and active transport reactions in cell membranes. Nature 203, 720 (1964).PubMedCrossRefGoogle Scholar
  75. WU, R.: Effect of azide and oligomycin on inorganic phosphate transport in slices of rat kidney. Biochim. et Biophys. Acta 82, 212 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Paul D. Shaw

There are no affiliations available

Personalised recommendations