Advertisement

Abstract

Ristocetin is a fermentation product of Nocardia lurida (Grundy et al., 1957). The commercial preparation of this antibiotic, Spontin, is a mixture of two closely related components, designated ristocetin A (> 90%) and ristocetin B. Although these two ristocetins have the same antimicrobial spectrum and exhibit no major differences in infrared or ultraviolet absorption spectra, optical rotation or elemental analysis, they can be separated by paper strip electrophoresis and paper chromatography. Their isolation, crystallization and chemical properties have been described by Philip, Schenck and Hargie (1957). The compounds are amphoteric, can be isolated as free bases and crystallized as sulphates, are soluble in acidic aqueous solutions, are less soluble in neutral aqueous solutions and are generally insoluble in organic solvents. They are very stable in aqueous acidic solutions and although there is no significant alteration in activity over a medium pH of 5.0 to 7.0 there is a rapid loss of activity above a pH of 7.5.

Keywords

Cell Wall Synthesis Leuconostoc Mesenteroides Ultraviolet Absorption Spectrum Neutral Aqueous Solution Mouse Tuberculosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderso., J. S., M. Matsuhash., M. A. Haski., and J. L. Strominge.: Lipidphosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Natl. Acad. Sci. US 5., 881 (1965).CrossRefGoogle Scholar
  2. Bes., G. K., and N. N. Durha.: Adsorption of the ristocetins to Bacillus subtili. cell walls. Abstracts of papers presented at the IVth International Congress of Chemotherapy, Washington, D.C., p. 86, 1965.Google Scholar
  3. Drie., C. P., and R. Koc.: Clinical evaluation of ristocetin in children. A preliminary report. Amer. J. Diseases Children 9., 752 (1960).CrossRefGoogle Scholar
  4. Fairbrothe., R. W., and B. L. William.: Invitro activity of ristocetin and framycetin, two new antibiotics. Lancet 1958 I., 1353.Google Scholar
  5. Girolam., R. L.: Ristocetin: In: F. Kavanag. (ed.), Analytical microbiology, p. 353. New York: Academic Press, Inc. 1963.Google Scholar
  6. Grund., W. E., E. F. Alfor., E. J. Rdzo., and J. C. Sylveste.: Ristocetin, the development of resistance and bactericidal activity. Antibiotics Ann. 1956/5., 693 (1957).Google Scholar
  7. Grund., W. E., A. C. Sinclai., R. J. Theriaul., A. M. Goldstei., C. J. Rickle., H. B. Warre., JR., T. J. Olive., and J. C. Sylveste.: Ristocetin, microbiological properties. Antibiotics Ann. 1956/5., 687 (1957).Google Scholar
  8. Meado., P. M., J. S. Anderso., and J. L. Strominge.: Enzymatic polymerization of Ud.-acetylmuramyl.L-ala.D-glu.L-lys.D-ala.D-ala and Ud.-acetylglucosamine by a particulate enzyme from Staphylococcus aureu. and its inhibition by antibiotics. Biochem. Biophys. Research Commun. 1., 382 (1964).CrossRefGoogle Scholar
  9. Par., J. T.: Uridine-5-pyrophosphate derivatives. I. Isolation from Staphylococcus aureu.. J. Biol. Chem. 19., 877 (1952a).PubMedGoogle Scholar
  10. Par., J. T.: Uridine-5-pyrophosphate derivatives. II. A structure common to three derivatives. J. Biol. Chem. 19., 885 (1952b).PubMedGoogle Scholar
  11. Par., J. T.: Uridine-5-pyrophosphate compounds. Ii.. Amino acid-containing derivatives. J. Biol. Chem. 19., 897 (1952c).PubMedGoogle Scholar
  12. Phili., J. E., J. R. Schenc., and M. P. Hargi.: Ristocetins A and B, two new antibiotics. Isolation and properties. Antibiotics Ann. 1956/5., 699 (1957).Google Scholar
  13. Phili., J. E., J. R. Schenc., M. P. Hargi., J. C. Holde., and W. E. Grund.: The increased activity of ristocetins A and B following acid hydrolysis. Antimicrobial Agents Ann., p. 10 (1961).Google Scholar
  14. Rehace., Z.: Quantitative determination of ristocetin by a microbiological diffusion method. Folia Microbial., 22 (1961).CrossRefGoogle Scholar
  15. Romansk., M. J., C. W. Foulk., R. A. Olsso., and J. R. Holme.: Ristocetin in bacterial endocarditis. An evaluation of short-term therapy. Arch. Internal Med. 107., 480 (1961).CrossRefGoogle Scholar
  16. Strominge., J. L.: Biosynthesis of bacterial cell walls. In: I. C. Gunsalu. and R. Y. Stanie. (eds.), The bacteria, vol. Ii., p. 413. New York: Academic Press Inc. 1962.Google Scholar
  17. Struv., W. G., and F. C. Neuhau.: Evidence for an initial acceptor of Ud.-NAcmuramyl-pentapeptide in the synthesis of bacterial mucopeptide. Biochem. Biophys. Research Commun. 18., 6 (1965).CrossRefGoogle Scholar
  18. Sylveste., J. C., G. A. Olande., and V. Z. Hutching.: Intra-and extraperitoneal administration of ristocetin and polymyxin B. Antimicrobial Agents and Chemotherapy 1962, p. 526 (1963).Google Scholar
  19. Walla., C. H., and J. L. Strominge.: Ristocetins, inhibitors of cell wall synthesis in Staphylococcus aureu.. J. Biol. Chem. 238., 2264 (1963).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • D. C. Jordan

There are no affiliations available

Personalised recommendations