Advertisement

Antibiotics pp 481-493 | Cite as

Azaserine and 6-Diazo-5 -Oxo-L-Norleucine (DON)

  • R. F. Pittillo
  • D. E. Hunt

Abstract

The discovery of azaserine in culture filtrates of Streptomyces fragilis (Anderson et al., 1956) was announced by Ehrlich et al. (1954); and its inhibitory activity against Crocker Mouse Sarcoma 180 was described (Stock et al., 1954). 6-Diazo-5-oxo-l-norleucine(DON), produced by an unidentified Streptomyces, was discovered shortly thereafter (Ehrlich et al., 1956; Clark, Reilly and Stock, 1956). Azaserine occupies a unique position in the historical development of antibiotics: it is the first antibiotic whose discovery was the direct result of a systematic search for tumor-inhibiting antibiotics. Although equivocal clinical utility has been demonstrated against various malignancies, both of these antibiotics have proved to be valuable research tools and significant biochemical advances have resulted from their discovery.

Keywords

Aromatic Amino Acid Shikimic Acid Anthranilic Acid Purine Metabolism Federation Proc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Mode of action of azaserine on Gaf fkya homari. J. Bacteriol. 77, 548 (1959).PubMedGoogle Scholar
  2. Abrams, R., and M. Bentley: Biosynthesis of nucleic acid purines. Iii. Guanosine 5’-phosphate formation from xanthosine 5’-phosphate and L-glutamine. Arch. Biochem. Biophys. 79, 91 (1959).Google Scholar
  3. Ammann, C. A., and R. S. Safferman: The onion test as a possible screening method for antitumor agents. Antibiotics & Chemotherapy 8, 1 (1958).Google Scholar
  4. Anderson, L. E., J. Ehrlich, S. H. Sun, and P. R. Burkholder: Strains Of Streptomyces, the sources of azaserine, elaiomycin, griseoviridin, and viridogrisein. Antibiotics & Chemotherapy 6, 100 (1956).Google Scholar
  5. Anderson, E. P., and L. W. Law: Biochemistry of cancer. Ann. Rev. Biochem. 29, 577 (1960).PubMedGoogle Scholar
  6. Anderson, E. P., B. Levenberg, and L. W. Law: Purine biosynthesis in azaserinesensitive and -resistant lines of the mouse plasma cell neoplasm 70429. Federation Proc. 16, 145 (1957).Google Scholar
  7. Barclay, R. K., E. Garfinkel, and M. Phillipps: Effects of 6-diazo-5-oxo-L-norleucine on the incorporation of precursors into nucleic acids. Cancer Res. 22, 809 (1962).Google Scholar
  8. Barg, W., E. Boggiano, N. Sloane, and E. C. Derenzo: Inhibitors of de novo formyl glycinamide ribotide synthesis in pigeon liver extracts. Federation Proc. 16, 150 (1957).Google Scholar
  9. Barker, S. A., J. A. Bassham, M. Calvin, and U. A. Quark: Sites of azaserine inhibition during photosynthesis by Scenedesmus. J. Am. Chem. Soc. 78, 4632 (1956).Google Scholar
  10. Benbadis, M. C.: Modality of the resumption of mitotic activity in the radicular meristem of Allium sativum after moderate treatment with azaserine; comparison with the action of triethylene melamine. Compt. Rend. Soc. Biol. 260, 268 (1965).Google Scholar
  11. Bennett, JR., L. L., F. M. Schabel, JR., and H. E. Skipper: Studies on the mode of action of azaserine. Arch. Biochem. Biophys. 64, 423 (1956).Google Scholar
  12. Brock, T. D., and M. L. Brock: Reversal of azaserine by phenylalanine. J. Bacteriol. 81, 212 (1961).PubMedGoogle Scholar
  13. Brockman, R. W.: Mechanisms of resistance to anticancer agents. In: A. Haddow and S. Weinhouse (eds.), Advances in cancer research, vol. 7, p. 129. NewYork: Academic Press, Inc. 1963.Google Scholar
  14. Brockman, R. W., and E. P. Anderson: Biochemical effects of duazomycin A in the plasma cell neoplasm 70429. Proc. Am. Assoc. Cancer Research 3, 307 (1962) (Abstract 32).Google Scholar
  15. Buchanan, J. M.: The interference of azaserine in purine biosynthesis. In: G.E. W. Wolstenholme and C. M. O’Connor (eds.), p. 75–88. Ciba foundation symposium on amino acids and peptides with antimetabolic activity. London: J. & A. Churchill, Ltd. 1958.Google Scholar
  16. Burchenal, J. H., M. L. Murphy, and C. T. C. Tan: Treatment of acute leukemia. Pediatrics 18, 643 (1956).PubMedGoogle Scholar
  17. Burchenal, J. H., M. L. Murphy, C. T. C. Tan, M. Yuceoglu, and D. A. Karnofsky: Combination therapy of acute leukemia with azaserine and mercaptopurine. Am. J. Diseases Children 90, 644 (1955).Google Scholar
  18. Clarke, D. A., H. C. Reilly, and C. C. Stock: A comparative study of 6-diazo5-oxo-L-norleucine and O-diazoacetyl-L-serine on Sarcoma 180. Antibiotics & Chemotherapy 7, 653 (1957).Google Scholar
  19. Coffey, G. L., A. B. Hillegas, M. P. Knudsen, H. J. Koepsell, J. E. Oyaas, and J. Ehrlich: Azaserine: microbiological studies. Antibiotics & Chemotherapy 4, 775 (1954).Google Scholar
  20. Crystal, M. M.: The induction of sexual sterility in the screwworm fly by antimetabolites and alkylating agents. J. Econ. Entomol. 56, 468 (1963).Google Scholar
  21. Dagg, C. P., and D. A. Karnofsky: Teratogenic effects of azaserine on the chick embryo. J. Exptl. Zool. 130, 555 (1955).Google Scholar
  22. Dawid, I. B., T. C. French, and J. M. Buchanan: Azaserine-reactive sulfhydryl group of 2-formamido-N-ribosylacetamide-5’-phosphate: L-glutamine amido-ligase (adenosine diphosphate). II. Degradation of azaserine-C14-labeled enzyme. J. Biol. Chem. 238, 2178 (1963).PubMedGoogle Scholar
  23. de Voe, S. E., N. E. Rigler, A. J. Shay, J. H. Martin, T. C. Boyd, E. J. Backus, J. H. Mowat, and N. Boxonos: Alazopeptin: production, isolation, and chemical characteristics. In: H. Welch and F. Marti-Ibanez (eds.), Antibiotics annual, p. 730–735. NewYork: Medical Encyclopedia 1957.Google Scholar
  24. Dion, H. W., S. A. Fusari, Z. L. Jakubowski, J. G. Zora, and Q. R. Bartz: A6-Diazo-5-oxo-L-norleucine, a new tumor-inhibitory substance. II. Isolation and characterization. J. Am. Chem. Soc. 78, 3075 (1956).Google Scholar
  25. Duval, L. R.: New agent data summaries: azaserine. Cancer Chemoth. Rept. 7, 65 (1960a).Google Scholar
  26. Duval, L. R.: New agent data summaries: A6-diazo-5-oxo-L-norleucine. Cancer Che-moth. Rept. 7, 86 (1960b).Google Scholar
  27. Ehrlich, J., L. E. Anderson, G. L. Coffey, A. B. Hillegas, M. P. Knudsen, H. J. Koepsell, D. L. Kohberger, and J. E. Oyaas: Antibiotic studies of azaserine. Nature 173, 72 (1954).PubMedGoogle Scholar
  28. Ehrlich, J., G. L. Coffey, M. W. Fisher, A. B. Hillegas, D. L. Kohberger, H. E. Machamer, W. A. Rightsel, and F. R. Roegner: 6-Diazo-5-oxo-L-norleucine, a new tumor inhibitory substance. Antibiotics & Chemotherapy 6, 487 (1956).Google Scholar
  29. Fernandes, J. F., G. A. LE Page, and A. Lindner: The influence of azaserine and 6-mercaptopurine on the in vivo metabolism of ascites tumor cells. Cancer Research 16, 154 (1956).PubMedGoogle Scholar
  30. French, T. C., I. B. Dawid, and J. M. Buchanan: Azaserine reactive sulfhydryl group of 2-formamido-N-ribosylacetamide 5’-phosphate: L-glutamine amido-ligase (adenosine diphosphate). Iii. Comparison of degradation products with synthetic compounds. J. Biol. Chem. 238, 2186 (1963).Google Scholar
  31. French, T. C., I. B. Dawid, R. A. Day, and J. M. Buchanan: Azaserine-reactive sulfhydryl group of 2-formamido-N-ribosylacetamide 5’-phosphate: L-glutamine amido-ligase (adenosine diphosphate). I. Purification and properties of the enzyme from Salmonella typhimurium and the synthesis of L-azaserine-C14. J. Biol. Chem. 238, 2171 (1963).Google Scholar
  32. Friedman, M. H.: The effect of O-diazoacetyl-L-serine (azaserine) on the pregnancy of the dog; a preliminary report. J. Am. Vet. Med. Assoc. 130, 159 (1957).PubMedGoogle Scholar
  33. Fusari, S. A., R. P. Frohardt, A. Ryder, T. H. Haskell, D. W. Johannessen, C. C. Elder, and Q. R. Bartz: Azaserine, a new tumor-inhibitory substance. Isolation and characterization. J. Am. Chem. Soc. 76, 2878 (1954a).Google Scholar
  34. Fusari, S. A., T. H. Haskell, R. B. Frohardt, and Q. R. Bartz: Azaserine, a new tumor-inhibitory substance. Structural studies. J. Am. Chem. Soc. 76, 2881 (1954b).Google Scholar
  35. Goldthwait, D. A.: A5-Phosphoribosylamine, a precursor of glycinamide ribotide. J. Biol. Chem. 222, 1051 (1956).PubMedGoogle Scholar
  36. Gots, J. S., and E. G. Gollub: Purine metabolism in bacteria. IV. L-azaserine as an inhibitor. J. Bacteriol. 72, 858 (1956).PubMedGoogle Scholar
  37. Greenlees, J., and G. A. LE Page: Purine biosynthesis and inhibitors in ascites cell tumors. Cancer Research 16, 808 (1956).PubMedGoogle Scholar
  38. Griswold, D. P., W. R. Laster, JR., M. Y. Snow, F. M. Schabel, JR., and H. E. Skipper: Experimental evaluation of potential anticancer agents. Xii. Quantitative drug response of SA 180, Ca 755, and leukemia L 1210 systems to a standard list of active and inactive agents. Cancer Research, Suppl. (part. 2), 23 (4), 271 (1963).Google Scholar
  39. Grosch, D. S.: Insect fecundity and fertility: chemically induced decrease. Science 141, 732 (1963).PubMedGoogle Scholar
  40. Harris, J. J.: The effect of Nsc survey compounds on human tumors in embryonated eggs. Cancer Research, Suppl. (part 2), 22 (1), 1 (1962).Google Scholar
  41. Hartman, S. C.: Glutamine-phosphoribosyl pyrophosphate amidotransferase (Gpa). Federation Proc. 21, 244 (1962).Google Scholar
  42. Hartman, S. C., B. Levenberg, and J. M. Buchanan: Involvement Of Atp, 5-phosphoribosylpyrophosphate and L-azaserine in the enzymatic formation of glycinamide ribotide intermediates in inosinic acid biosynthesis. J. Am. Chem. Soc. 77, 501 (1955).Google Scholar
  43. Hedegaard, J., S. Maspero-Segre, N. V. Thoai, and J. Roche: Influence of histidine and its metabolites on biosynthesis of purines by Escherichia coli B. IV. Action on cultures inhibited by azaserine. Compt. Rend. S.c. Biol. 153, 767 (1959a).Google Scholar
  44. Hedegaard, J., S. Maspero-Segre, N. V. Thoai, and J. Roche: Influences of histidine and its metabolites on biosynthesis of purines by Escherichia coli B. V. Mode of action in cultures inhibited by azaserine. Compt. Rend. S.c. Biol. 153, 954 (1959b).Google Scholar
  45. Hedegaard, J., N. V. Thoai, and J. Roche: The influence of histidine on the biosynthesis of purines in Escherichia coli. Arch. Biochem. Biophys. 83, 183 (1959).PubMedGoogle Scholar
  46. Henderson, J. R., and I. G. Funga: Inhibition of ascites tumor growth by 4-aminopyrazolo [3,4-d] pyrimidine in combination with azaserine, 6-mercaptopurine, and thioguanine. Cancer Research 20, 1618 (1960).PubMedGoogle Scholar
  47. Henderson, J. R., and I. G. Funga: Treatment of ascites tumors with 4-aminopyrazolo [3,4-d] pyrimidine alone and in combination with azaserine, thioguanine, and 6-mercaptopurine. Cancer Research (part 2), 21 (3), 7 (1961).Google Scholar
  48. Hutchison, D. J.: Cross resistance and collateral sensitivity studies in cancer chemotherapy. In: A. Haddow and S. Weinhouse (eds.), Advances in cancer research, vol. 7, p. 235. New York: Academic Press, Inc. 1963.Google Scholar
  49. Hutchison, D. J., D. L. Robinson, D. Martin, O. L. Ittensohn, and J. Dillenberg: Effects of selected cancer chemotherapeutic drugs on the survival times of mice with L 1210 leukemia: relative responses of antimetabolite-resistant strains. Cancer Research, Suppl., (part 2), 22 (1), 57 (1962).Google Scholar
  50. Iyer, V. N., and W. Szybalski: Mechanism of chemical mutagenesis. I. Kinetic studies on the action of triethylene melamine (Tem) and azaserine. Proc. Natl. Acad. Sci. U.S. 44, 446 (1958).Google Scholar
  51. Iyer, V. N., and W. Szybalski: Mutagenic effect of azaserine in relation to azaserine resistance in E. coli. Science 129, 839 (1959).PubMedGoogle Scholar
  52. Jacquez, J. A.: Active transport of O-diazoacetyl-L-serine and 6-diazo-5-oxo-L-nor-leucine in Ehrlich ascites carcinoma. Cancer Research 17, 890 (1957).PubMedGoogle Scholar
  53. Jacquez, J. A.: Concentrative uptake of 6-diazo-5-oxo-L-norleucine by sarcoma 180, liver and muscle in vivo. Proc. Soc. Exptl. Biol. Med. 99, 611 (1958).Google Scholar
  54. Jacquez, J. A., and J. H. Sherman: Enzymatic degradation of azaserine. Cancer Research 22 (1), 56 (1962).PubMedGoogle Scholar
  55. Jaffre, J. J.: In vivo activity of L-azaserine against Trypanosoma equiperdum. J. Protozool. 10, 340 (1963).Google Scholar
  56. Johnson, I. S., L. A. Baker, and H. F. Wright: Possible utility of the Rous Sarcoma for antitumor screening. Ann. N.Y. Acad. Sci. 76, 861 (1958).PubMedGoogle Scholar
  57. Kaplan, L., H. C. Reilly, and C. C. Stock: Action of azaserine on Escherichia coli. J. Bacteriol. 78, 511 (1959).PubMedGoogle Scholar
  58. Kaplan, L., and C. C. Stock: Azaserine, an inhibitor of amino acid synthesis in Escherichia coli. Federation Proc. 13, 239 (1954).Google Scholar
  59. Karnofsky, D. A., and C. R. Lacon: Survey of cancer chemotherapy service center compounds for teratogenic effect in the chick embryo. Cancer Research, Suppl. (part 2), 22 (1), 84 (1962).Google Scholar
  60. Kohberger, D. L., H. C. Reilly, G. L. Coffey, A. B. Hillegas, and J. Ehrlich: Azaserine assay with Kloeckera brevis. Antibiotics & Chemotherapy 5 (2), 59 (1955).Google Scholar
  61. Langan, T. A., N. O. Kaplan, and L. Shuster: Formation of the nicotinic acid analogue of diphosphopyridine nucleotide after nicotinamide administration. J. Biol. Chem. 234, 2161 (1959).PubMedGoogle Scholar
  62. Lee, K. H., and Y. Yuzuriha: Studies on cell growth and cell division Iii. Action of azaserine on cell division. J. Pharm. Sci. 53, 290 (1964).PubMedGoogle Scholar
  63. Lee, K. H., Y. O. Yuzuriha, and J. J. Eiler: Studies on cell growth and cell division. II. Selective activity of chloramphenicol and azaserine on cell growth and cell division. J. Am. Pharm. Assoc. 48, 470 (1959).Google Scholar
  64. Le Page, G. A., and N. Howard: Chemotherapy studies of mammary tumors of C3H mice. Cancer Research 23, 622 (1963).Google Scholar
  65. Levenberg, B., I. Melnick, and J. M. Buchanan: Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 225, 163 (1957).PubMedGoogle Scholar
  66. Loustalot, P., P. A. Desaulles, and R. Meier: Characterization of the specificity of action of tumor-inhibiting compounds. Ann. N.Y. Acad. Sci. 76, 838 (1958).PubMedGoogle Scholar
  67. Maxwell, R. E., and V. S. Nickel: Filament formation in Escherichia coli induced by azaserine and other antineoplastic agents. Science 120, 270 (1954).PubMedGoogle Scholar
  68. Maxwell, R. E., and V. S. Nickel: 6-Diazo-5-oxo-L-norleucine, a new tumor inhibitory substance. V. Microbiologic studies of mode of action. Antibiotics & Chemotherapy 7, 81 (1957).Google Scholar
  69. Mccarthy, D. A., A. Bayles, and P. E. Thompson: The effect of azaserine against Plasmodium lophurae in chicks and attempts to antagonize this effect with metabolites. J. Parasitol. 43, 283 (1957).PubMedGoogle Scholar
  70. Mercker, P. C., P. Anido, J. Sarino, and G. W. Woolley: A study of human epidermoid carcinoma (H.Ep. No. 3) growing in conditioned Swiss mice. Iii. Chemotherapy with selected chemicals and observations on diet, food intake, and drug toxicities. Cancer Research, Suppl. (part 2) 22 (1), 9 (1962).Google Scholar
  71. Van Der Meulen, P. Y. F., and J. A. Bassham: Study of inhibition of azaserine and diazoöxonorleucine (Don) on the algae Scenedesmus and Chlorella. J. Am. Chem. Soc. 81, 2233 (1959).Google Scholar
  72. Moore, E. C., and R. B. Hurlbert: Biosynthesis of ribonucleic acid (Rna), cytosine, and Rna purines: differential inhibition by diazoöxonorleucine. Cancer Research 21, 257 (1961).PubMedGoogle Scholar
  73. Murphy, M. L., and D. A. Karnofsky: Effect of azaserine and other growth-inhibiting agents on fetal development of the rat. Cancer 9, 955 (1962).Google Scholar
  74. Nakamura, M.: Amoebicidal action of azaserine. Nature 178, 1119 (1956).PubMedGoogle Scholar
  75. Narkates, A. J., and R. F. Pittillo: Inhibition of nonproliferating Escherichia coli by azaserine. In: J. C. Sylvester (ed.), p. 439–446, Antimicrobial agents and chemotherapy, 1963. Ann Arbor: Braum-Brumfield, Inc. American Society for Microbiology 1964.Google Scholar
  76. Norman, A. G.: Inhibition of root growth by azaserine. Science 121, 213 (1955).PubMedGoogle Scholar
  77. Norman, A. G.: Inhibition of root growth and cation uptake by antibiotics. Soil Sci. Soc. Am. Proc. 23, 368 (1959).Google Scholar
  78. Patterson, E. L., B. L. Johnson, S. E. Devoe, and N. Bononos: Structure of the antitumor antibiotic alazopeptin (Abstract 38), p. 18. In: Abstracts of papers presented at the fifth interscience conference on antimicrobial agents and chemotherapy 1965.Google Scholar
  79. Pittillo, R. F.: Studies on the antimicrobial nature of action of azaserine. In: P. Gray, B. Tabenkin and S. G. Bradley (eds.), Antimicrobial agents annual, p. 276–287, 1960. New York: Plenum Press 1961.Google Scholar
  80. Pittillo, R. F., A. J. Narkates, and J. Burns: Microbiological evaluation of 1,3-bis (2-chloroethyl)-1-nitrosourea. Cancer Res. 24, 1222 (1964).PubMedGoogle Scholar
  81. Pittillo, R. F., and B. G. Quinnelly: Further studies on the antimicrobial nature of action of azaserine. In: M. Finland and G. M. Savage (eds.), Antimicrobial agents and chemotherapy, p. 245–253, 1961. Detroit: American Society for Microbiology 1962.Google Scholar
  82. Potter, M., and L. W. Law: Studies of a plasma cell neoplasm of the mouse. I. Characterization of neoplasm 70429, including its sensitivity to various anti-metabolites with the rapid development of resistance to azaserine, Don, and N-methyl formamide. J. Natl. Cancer Inst. 18, 413 (1957).Google Scholar
  83. Preisler, O.: Effect of cytostatic agents on the genital development of rabbits. Arch. Gynäkol. 192, 501 (1960).PubMedGoogle Scholar
  84. Preiss, J., and P. Handler: Biosynthesis of disphosphopyridine nucleotide. II. Enzymatic aspects. J. Biol. Chem. 233, 493 (1958).PubMedGoogle Scholar
  85. Rao, K. V.: Chemistry of the duazomycins. I. Duazomycins A. In: M. Finland and G. M. Savage (eds.), Antimicrobial agents and chemotherapy, 1961, p. 178–183. Detroit: American Society for Microbiology 1962.Google Scholar
  86. Rao, K. V., S. C. Brooks: Duazomycins A, B, and C, three antitumor substances. I. Isolation and characterization. In: H. Welch and F. Marti-Ibanez (eds.), Antibiotics annual, p. 943–948. New York: Medical Encyclopedia 1960.Google Scholar
  87. Reilly, H. C.: Inactivation of azaserine by a liver enzyme. Federation Proc. 13, 279 (1954a).Google Scholar
  88. Reilly, H. C.: The effect of amino acids upon the antimicrobial activity of azaserine. Proc. Am. Assoc. Cancer Res. 1, 40 (1954b).Google Scholar
  89. Reilly, H. C.: Effect of test medium upon the demonstration of antimicrobial activities of certain antibiotics. Bacteriol. Proc. 9, 72 (1956).Google Scholar
  90. Reilly, H. C.: Some aspects of azaserine, 6-diazo-5-oxo-L-norleucine and ß-2-Thienylalanine. In: G. E. W. Wolstenholme and C. M. O’Connor (eds.), Ciba foundation symposium on amino acids and peptides with antimetabolic activity, p. 62–74. London: J. and. A. Churchill, Ltd. 1958.Google Scholar
  91. Rivera, A., and P. R. Srinivasan: 3-Enolpyruvylshikimate 5-phosphate, an intermediate in the biosynthesis of anthranilate Proc. Natl. Acad. Sci. U.S. 48, 864 (1962).Google Scholar
  92. Sartorelli, A. C., and B. A. Booth: Comparative studies on the in vivo action of 6-chloropurine,6-chloropurine ribonucleoside, and 6-chloro-9-ethylpurine on sarcoma 180 ascites cells. J. Parmacol. Exptl. Ther. 134, 123 (1961).Google Scholar
  93. Sartorelli, A. C., and B. A. Booth: Some factors affecting the tumor-inhibitory properties of combinations of azaserine and 6-chloropurine. Biochem. Pharmacol. 12, 847 (1963).PubMedGoogle Scholar
  94. Sartorelli, A. C., and G. A. LE Page: Inhibition of ascites cell growth by combinations of 6-thioguanine and azaserine. Cancer Res. 18, 938 (1958).PubMedGoogle Scholar
  95. Skipper, H. E.: Perspectives in cancer chemotherapy: therapeutic design. Cancer Res. 24, (8), 1295 (1964).PubMedGoogle Scholar
  96. Srinivasan, P. R.: Enzymatic synthesis of anthranilic acid from shikimic acid5-phosphate and L-glutamine J Am. Chem. Soc. 81, 1772 (1959).Google Scholar
  97. Srinivasan, P. R., and B. Weiss: The biosynthesis of p-amino-benzoic acid: studies on the origin of the amino group. Biochem. Biophys. Acta 51, 597 (1961).PubMedGoogle Scholar
  98. Stock, C. C., H. C. Reilly, S. M. Buckley, D. A. Clarke, and C. P. Rhoads: Azaserine, a new tumor inhibitory substance: studies with Crocker mouse sarcoma 180. Nature 173, 71 (1954).PubMedGoogle Scholar
  99. Sugiura, K.: Studies in a spectrum of mouse, rat, and hamster tumors. Cancer Res., Suppl. (part 2) 22 (1), 93 (1962).Google Scholar
  100. Tarnowski, G. S., and C. C. Stock: Effects of combinations of azaserine and 6-diazo5-oxo-L-norleucine with purine analogs and other antimetabolites on the growth of two mouse mammary carcinomas. Cancer Res. 17, 1033 (1957).PubMedGoogle Scholar
  101. Teller, M. N.: Chemotherapy of transplantable human tumors in the rat. Cancer Res., Suppl. (part 2) 22 (1), 25 (1962).Google Scholar
  102. Thiersch, J. B.: Effect of 0-diazo acetyl-L-serine on rat litter. Proc. Soc. Exptl. Biol. Med. 94, 27 (1957a).Google Scholar
  103. Thiersch, J. B.: Effect of 6-diazo-5-oxo-L-norleucine (Don) on the rat litter in utero. Proc. Soc. Exptl. Biol. Med. 94, 33 (1957b).Google Scholar
  104. Tomisek, A. J., H. J. Kelly, and H. E. Skipper: Chromatographic studies of purine metabolism. I. The effect of azaserine on purine biosynthesis in E. coli using various C14-labeled precursors. Arch. Biochem. Biophys. 64 (2), 437 (1956).PubMedGoogle Scholar
  105. Tomisek, A., M. R. Reid, W. A. Short, and H. E. Skipper: Studies on the photosynthetic reaction. Iii. The effects of various inhibitors upon growth and carbonate-fixation in Chlorella pyrenoidosa. Plant Physiol. 32, 7 (1957).PubMedGoogle Scholar
  106. Tomisek, A. J., M. R. Reid, and H. E. Skipper: Chromatographic studies of purine metabolism. IV. Reversal of azaserine-induced inhibition by phenylalanine and tryptophan. Cancer Res. 19, 489 (1959).PubMedGoogle Scholar
  107. Truhant, R., and G. Deysson: Use of the plant cellas test object for the control of cancer by application of radiomimetics. Bull. assoc. franç. étude cancer. 44, 221 (1957).Google Scholar
  108. Wheeler, G. P., F. M. Schabel, JR., and H. E. Skipper: Potentiated inhibition of Eschen chia coli by certain combinations of agents. Proc. Soc. Exptl. Biol. Med. 92, 396 (1956).Google Scholar
  109. Woolley, G. W.: Chemotherapy of transplantable human tumors in the hamster. Cancer Res., Suppl. (part 2), 22 (1), 34 (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • R. F. Pittillo
  • D. E. Hunt

There are no affiliations available

Personalised recommendations