Advertisement

Antibiotics pp 468-480 | Cite as

Cordycepin

  • Armand J. Guarino

Abstract

The early work of Cunningham et al. (1951) described the isolation of cordycepin from the culture broth of Cordyceps militaris (Linn) Link. and for approximately ten years this organism provided the chief source of cordycepin for the studies to be reported below. More recently Frederiksen et al. (1965) reported on its isolation from another strain of the same organism [Cordyceps militaris (L. Ex. Fr.) Link.] and Kaczka et al. (1964a) reported on the isolation and identification of this compound from cultures of Aspergillus nidulans (Eidam) Wint. To date, these appear to be the only organisms from which the nucleoside has been identified. Several routes for the chemical synthesis of this compound have been reported by Todd and Ulbricht (1960), Lee et al. (1961) and Walton et al. (1964).

Keywords

Aspergillus Nidulans Nucleic Acid Synthesis Ehrlich Ascites Tumor Cell Purine Biosynthesis Phosphoribosyl Pyrophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, H. R., K. G. Cunningham, and F. S. Spring: Cordycepin: A metabolic product from cultures of Cordyceps militayis (Linn.) Link. Part II. The structure of cordycepin. J. Chem. Soc. 1951, 2301.Google Scholar
  2. Cory, J. G., R. J. Suhadolnik, B. Resnick, and M. Rich: Incorporation of cordycepin (3’-deoxyadenosine) into ribonucleic acid and deoxyribonucleic acid of human tumor cells. Biochim. et Biophys. Acta 103, 646 (1965).Google Scholar
  3. Cunningham, K. G., S. A. Hutchinson, W. Manson, and F. S. Spring: Cordycepin, a metabolic product from cultures of Cordyceps militayis (Linn.) Link. Part I. Isolation and characterisation. J. Chem. Soc. 1951, 2299.Google Scholar
  4. Frederiksen, S.: Inhibition of ribonucleic acid and deoxyribonucleic acid synthesis in Ehrlich ascites cells by cordycepin-N’-oxide. Biochim. et Biophys. Acta 76, 366 (1963).Google Scholar
  5. Frederiksen, S., and H. Klenow: Differential inhibition by 3’-de Atp of nuclear and cytoplasmic Rna fractions of Ehrlich ascites tumor cells in vitro. Biochem. Biophys. Research. Commun. 17, 165 (1964).CrossRefGoogle Scholar
  6. Frederiksen, S., H. Malling, and H. Klenow: Isolation Of 3’-deoxyadenosine (cordycepin) from the liquid medium of Cordyceps militaris (L. Ex Fr.) Link. Biochim. et Biophys. Acta 95, 189 (1965).Google Scholar
  7. Gitterman, C. O., R. W. Burg, G. E. Boxer, D. Meltz, and J. Hitt: Relation of structure to activity of purine 3’-deoxynucleosides in KB cell and chick embryo fibroblast cell cultures. J. Med. Chem. 8, 664 (1965).CrossRefGoogle Scholar
  8. Jagger, D. V., N. M. Kredich, and A. J. Guarino: Inhibition of Ehrlich mouse ascites tumor growth by cordycepin. Cancer Research, 21, 216 (1961).PubMedGoogle Scholar
  9. Kaczka, E. A., E. L. Dulaney, C. O. Gitterman, H. B. Woodruff, and K. Folkers: Isolation and inhibitory effects on KB cell cultures of 3’-deoxyadenosine from Aspergillus nidulans (Eidam) Wint. Biochem. Biophys. Research Commun. 14, 452 (1964a).CrossRefGoogle Scholar
  10. Kaczka, E. A., N. R. Trenner, B. Arison, R. W. Walker, and K. Folkers: Identification of cordycepin, a metabolite of Cordyceps militayis, as 3’-deoxyadenosine. Biochem. Biophys. Research Commun. 14, 456 (1964b).CrossRefGoogle Scholar
  11. Klenow, H.: Formation of the mono-, di- and triphosphate of cordycepin in Ehrlich ascites-tumor cells in vitro. Biochim. et Biophys. Acta 76, 347 (1963a).Google Scholar
  12. Klenow, H.: Inhibition by cordycepin and 2-deoxyglucose of the incorporation of [HP] orthophosphate into the nuclei acids of Ehrlich ascites-tumor cells in vitro. Biochim. et Biophys. Acta 76, 354 (1963b).Google Scholar
  13. Klenow, H., and S. Frederiksen: Effect of 3’-deoxyAtp (cordycepin triphosphate) and 2’-deoxyAtp on the Dna-dependent Rna nucleotidyltransferase from Ehrlich ascites tumor cells. Biochim. et Biophys. Acta 87, 495 (1964).Google Scholar
  14. Klenow, H., and K. Overgaard-Hansen: Effect of cordycepin triphosphate on the incorporation of [8–14C] adenine and [S2P] orthophosphate into the acid-soluble ribotides of Ehrlich ascites tumor cells in vitro. Biochim. et Biophys. Acta 80, 500 (1964).Google Scholar
  15. Lee, W. W., A. Benitez, C. D. Anderson, L. Goodman, and B. R. Baker: Potential anticancer agents. LV. Synthesis of 3’-amino-2’,3’-dideoxyadenosine and related analogs J Am. Chem. Soc. 83, 1906 (1961).CrossRefGoogle Scholar
  16. Overgaard-Hansen, K.: The inhibition of 5-phosphoribosyl-1-pyrophosphate formation by cordycepin triphosphate in extracts of Ehrlich ascites tumor cells. Biochim. et Biophys. Acta 80, 504 (1964).Google Scholar
  17. Rich, M. A., P. Meyers, G. Weinbaum, J. G. Cory, and R. J. Suhadolnik. Inhibition of human tumor cells by cordycepin. Biochim. et Biophys. Acta 95, 194 (1965).CrossRefGoogle Scholar
  18. Rottman, F., and A. J. Guarino: Studies on the inhibition of Bacillus subtilis growth by cordycepin. Biochim. et Biophys. Acta 80, 632 (1964a).Google Scholar
  19. Rottman, F., and A. J. Guarino: The inhibition of purine biosynthesis de novo in Bacillus subtilis by cordycepin. Biochim. et Biophys. Acta 80, 640 (1964b).Google Scholar
  20. Rottman, F., and A. J. Guarino: The inhibition of phosphoribosyl-pyrophosphate amidotransferase activity by cordycepin monophosphate. Biochim. et Biophys. Acta 89, 465 (1964c).Google Scholar
  21. Shigeura, H. T., and G. E. Boxer: Incorporation of 3’-deoxyadenosine-5’-triphosphate into Rna by Rna polymerase from Micrococcus lysodeikticus. Biochem. Biophys. Research Commun. 17, 758 (1964).CrossRefGoogle Scholar
  22. Shigeura, H. T., and C. N. Gordon: The effects of 3’-deoxyadenosine on the synthesis of ribonucleic acid. J. Biol. Chem. 240, 806 (1965).PubMedGoogle Scholar
  23. Slechta, L.: Studies on the mode of action of psicofuranine. Biochem. Pharmacol. 5, 96 (1960).PubMedCrossRefGoogle Scholar
  24. Suhadolnik, R. J., and J. G. Cory: Further evidence for the biosynthesis of cordycepin and proof of the structure of 3-deoxyribose. Biochim et Biophys. Acta 91, 661 (1964).Google Scholar
  25. Suhadolnik, R. J., and J. G. Cory: Effect of cordycepin triphosphate (3’-deoxyadenosine-5’-triphosphate) on the E. coli Dna polymerase system. Abs. 150th Meeting Am. Chem. Soc. 86C (1965).Google Scholar
  26. Todd, A., and T. L. V. Ulbricht: Deoxynucleosides and related compounds. IX. Synthesis of 3’-deoxy-adenosine. J. Chem. Soc. 3275 (1960).Google Scholar
  27. Walton, E., R. F. Nutt, S. R. Jenkins, and F. W. Holly: A3’-Deoxynucleosides. I. A synthesis of 3’-deoxyadenosine. J. Am. Chem. Soc. 86, 2952 (1964).CrossRefGoogle Scholar
  28. Wyngaarden, J. B., and D. M. Ashton: The regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides: A potential feedback control of purine biosynthesis. J. Biol. Chem. 234, 1492 (1959).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Armand J. Guarino

There are no affiliations available

Personalised recommendations